
CS 305
Design and Analysis of Algorithms

09 / 16 / 2021

Instructor: Michael Eckmann

Michael Eckmann - Skidmore
College - CS 305 - Fall 2021

Today’s Topics
• Questions / Comments?
• Reading:

– 29-38 (MergeSort, covered last time)
– 56-57 (logarithms, to be covered today)
– 65-67 (recurrence relations, covered last time)
– 88-92 (recursion tree method of solving recurrence

relations)
– 68-82 (optional reading on 2 example problems and

algorithms w/ recurrence relations)
– 93-96 (Master Theorem, to be started today)

• Logarithms
• Master Method of solving recurrences

– Prove case 1

Recurrence Relations
• For MergeSort
• Time(n) = 2 * Time(n/2) + n

• Number of recursive calls is 2
• The time for one recursive call is Time(n/2)
• The time in a call is n

• In general for divide and conquer
• T(n) = a * T(n/b) + f(n)

• Number of recursive calls is a
• n/b is size of list in a recursive call
• The time in a call is f(n)

Michael Eckmann - Skidmore
College - CS 305 - Fall 2021

Recurrence Relations
• In other words, a divide and conquer algorithm

that creates a subproblems each a factor of 1/b
the size of the original problem and takes f(n)
amount of time to do the divide and combine
steps.

• T(n) = a * T(n/b) + f(n)
• Number of recursive calls is a
• n/b is size of list in a recursive call
• The time in a call is f(n)

Michael Eckmann - Skidmore
College - CS 305 - Fall 2021

Recurrence Relations
• Let me draw the recursion tree for arbitrary a

and b.
• How many leaves?
• Let’s see an example with explicit values for a

and b.
• How many leaves?
• T(n) = a * T(n/b) + f(n)
• Let’s prove, by induction, that the number of

leaves in a perfect binary tree is 2d, where d =
depth of the tree.

Michael Eckmann - Skidmore
College - CS 305 - Fall 2021

Logarithms
y = logba iff by = a, a > 0, b > 0 and b != 1
• In English: one way to read logba is “what

exponent of b results in a?”
• When b=2, log2a is the number of times a can be

cut in half (until you hit 1.)
• log2 1024 = ? It is the power of 2 that gives you

1024 (or the number of times 1024 be cut in half
until you hit 1.)

Michael Eckmann - Skidmore
College - CS 305 - Fall 2021

Logarithms
• Let’s show some properties of logarithms on the

board.

Michael Eckmann - Skidmore
College - CS 305 - Fall 2021

Logarithms
 Let’s go back and look at the a-ary tree and

recall there are a^(logbn) --- that is a to the
power logbn

 Any other way to specify a^(logbn) ?

Michael Eckmann - Skidmore
College - CS 305 - Fall 2021

Logarithms
 Let’s go back and look at the a-ary tree and

recall there are a^(logbn) --- that is a to the
power logbn

 Any other way to specify a^(logbn) ?
 n^(logba)
 better because it is n to some constant power

Michael Eckmann - Skidmore
College - CS 305 - Fall 2021

Master Method for Recurrences
• Soon we will learn the Master Method which

can be used to solve recurrences of the form:
T(n) = a * T(n/b) + f(n)

• There are 3 cases to consider each based on a
relationship of time spent at leaves vs. at the
root.

• As an example, and to help us shortly, let’s now
count the number of nodes in a perfect tree, say
a 3-ary tree.

Michael Eckmann - Skidmore
College - CS 305 - Fall 2021

Master Method for Recurrences
• Recurrences of the form: T(n) = a * T(n/b) + f(n)

• Case 1: if time spent at root is “at most little bit smaller”
than time spent at all the leaves, then the running time of
algorithm is dominated by the time spent at the leaves

• Case 2: if time spent at root is big theta (same as) of
time spent at all the leaves then it is lgn * time spent at
leaves

• Case 3: if time spent at root is “at least little bit larger”
than time spent at all the leaves, then the running time of
algorithm is dominated by the time spent at the root

Michael Eckmann - Skidmore
College - CS 305 - Fall 2021

Master Method for Recurrences
• Let’s write T(n) from that a-ary recursion tree as

time spent at leaves plus time spent at internal
nodes

• Let’s prove case 1 of master theorem which will
tell us the running time when time spent at root
is “at most little bit smaller” than time spent at
all the leaves

Michael Eckmann - Skidmore
College - CS 305 - Fall 2021

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

