CS 209
Data Structures and Mathematical

Foundations

04 /29 /2024

Instructor: Michael Eckmann



Today’s Topics
* Questions?/Comments?
* Graphs

Michael Eckmann - Skidmore
College - CS 209 - Spring 2024



Graphs

* Graphs consist of a set of vertices and a set of edges.
* An edge connects two vertices.
* Edges can be directed or undirected.

* Directed graphs' edges are all directed. Undirected graphs'
edges are all undirected.

* Edges can be weighted or unweighted



Graphs

* Graph traversals

— Breadth First Search (BFS) and Depth First
Search (DFYS) are traversals



Graphs

* Graph traversal

—Breadth first search (BFS)
* Pick a vertex at which to start
* Visit all of the adjacent vertices to the start vertex

* Then for each of the adjacent vertices, visit their
adjacent vertices

* And so on until there are no more adjacent vertices
* Do not visit a vertex more than once

—Only vertices that are reachable from the start vertex
will be visited --- example on the board.

—The order that vertices in a BFS are visited are in
increasing order of length of path from starting vertex.

—Those that have the same path length from the start
vertex can be visited in any order.

—Example of BFS on the board.




Graphs

* Implementation of breadth first search

—Have a flag for each vertex to mark it as unvisited, waiting, or
visited — so we don't visit vertices more than once.

— Keep a queue which will hold the vertices to be visited

— QOutput a visited list of vertices

— BFS algorithm:
* Mark all vertices as unvisited
* Initially enqueue a vertex into the queue, mark it as waiting
* While the queue 1s not empty

— Dequeue a vertex from the queue
— Put 1t 1n the visited list, mark 1t as visited

— Enqueue all the adjacent vertices that are
marked as unvisited to the vertex just
dequeued.

— Mark the vertices just enqueued as waiting
* return the visted list



Graphs

* Graph traversal

— Depth first search (DFS)
* Pick a vertex at which to start

* Visit one of its adjacent vertices then visit one of that
one's adjacent vertices, and so on until there 1s no
unvisited adjacent vertex of the one we're working on.

* Then backtrack one level and visit another adjacent
vertex from that one and repeat.

* Do this until we're at the start vertex and there's no more
unvisited adjacent vertices

* Do not visit a vertex more than once

—Only cxifertices that are reachable from the start vertex will be
visite

— Those vertices that are adjacent to a vertex can be visited in
any order.

— Example of DFS on the board.



Graphs

* Recall that the BFS used a Queue.
* DFS
— Any thoughts on how DFS could be implemented?

— What data structure allows us to “backtrack’?



Graphs

* DFS
—set all vertices to UNVISITED
— push start vertex
— visit start vertex and set start vertex to visited
—while (stack 1s not empty)
* peek to get vertex at top of stack
* try to get an unvisited adjacent vertex to the peeked one
* 1f there 1sn't one
— pop the stack
* ceclse

— push that unvisited adj v to the stack
— Put 1t 1n the visited list and set 1t to visited

—return the visited list



Graphs

* Shortest path algorithms

—problem 1is to find the shortest path from one given vertex to
cach of the other vertices.

—output 1s a list of paths from given vertex to all other
vertices

—what real world examples might ever want to find the
shortest path?



Graphs

* Shortest path algorithms

—problem 1is to find the shortest path from one given vertex to
cach of the other vertices.

—output 1s a list of paths from given vertex to all other
vertices

—the shortest path could be in terms of path length (number
of edges between vertices)

* ¢.g. a direct flight has path length 1, flights with
connecting flights have path length > 1

—the shortest path could be in terms of minimum weight for
weighted graphs (example on the board.)

* ¢.g. finding the lowest cost flights
* Dijkstra's algorithm solves this problem



Graphs

* the shortest path could be in terms of path length (number of
edges between vertices)

* ¢.g. a direct flight has path length 1, flights with
connecting flights have path length > 1

— Initialize all lengths to infinity
— Process the graph in a BFS order starting at the given vertex

—but when visit a node, also replace its length with the
current length.

* Example on the board

* This 1s just BFS while also keeping track of path lengths.



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

