
CS 209
Data Structures and Mathematical 

Foundations
04 / 29 / 2024

Instructor:  Michael Eckmann



Michael Eckmann  -  Skidmore 
College  -  CS 209 -  Spring 2024

Today’s Topics
• Questions?/Comments?
• Graphs



Graphs
• Graphs consist of a set of vertices and a set of edges.
• An edge connects two vertices.
• Edges can be directed or undirected.
• Directed graphs' edges are all directed.  Undirected graphs' 

edges are all undirected.
• Edges can be weighted or unweighted



Graphs
• Graph traversals

– Breadth First Search (BFS) and Depth First 
Search (DFS) are traversals



Graphs
• Graph traversal

– Breadth first search (BFS)
• Pick a vertex at which to start 
• Visit all of the adjacent vertices to the start vertex
• Then for each of the adjacent vertices, visit their 

adjacent vertices
• And so on until there are no more adjacent vertices
• Do not visit a vertex more than once

– Only vertices that are reachable from the start vertex 
will be visited --- example on the board.

– The order that vertices in a BFS are visited are in 
increasing order of length of path from starting vertex.

– Those that have the same path length from the start 
vertex can be visited in any order.

– Example of BFS on the board.



Graphs
• Implementation of breadth first search

– Have a flag for each vertex to mark it as unvisited, waiting, or 
visited – so we don't visit vertices more than once.

– Keep a queue which will hold the vertices to be visited 
– Output a visited list of vertices
– BFS algorithm:

• Mark all vertices as unvisited
• Initially enqueue a vertex into the queue, mark it as waiting
• While the queue is not empty

– Dequeue a vertex from the queue
– Put it in the visited list, mark it as visited
– Enqueue all the adjacent vertices that are 

marked as unvisited to the vertex just 
dequeued.

– Mark the vertices just enqueued as waiting
• return the visted list



Graphs
• Graph traversal

– Depth first search (DFS)
• Pick a vertex at which to start 
• Visit one of its adjacent vertices then visit one of that 

one's adjacent vertices, and so on until there is no 
unvisited adjacent vertex of the one we're working on.

• Then backtrack one level and visit another adjacent 
vertex from that one and repeat.

• Do this until we're at the start vertex and there's no more 
unvisited adjacent vertices

• Do not visit a vertex more than once
– Only vertices that are reachable from the start vertex will be 

visited
– Those vertices that are adjacent to a vertex can be visited in 

any order.
– Example of DFS on the board.



Graphs
• Recall that the BFS used a Queue.
• DFS

– Any thoughts on how DFS could be implemented?
– What data structure allows us to “backtrack”?



Graphs
• DFS

– set all vertices to UNVISITED
– push start vertex
– visit start vertex and set start vertex to visited
– while (stack is not empty)

• peek to get vertex at top of stack
• try to get an unvisited adjacent vertex to the peeked one
• if there isn't one

– pop the stack
• else

– push that unvisited adj v to the stack
– Put it in the visited list and set it to visited

– return the visited list



Graphs
• Shortest path algorithms

– problem is to find the shortest path from one given vertex to 
each of the other vertices.

– output is a list of paths from given vertex to all other 
vertices

– what real world examples might ever want to find the 
shortest path?



Graphs
• Shortest path algorithms

– problem is to find the shortest path from one given vertex to 
each of the other vertices.

– output is a list of paths from given vertex to all other 
vertices

– the shortest path could be in terms of path length (number 
of edges between vertices)

• e.g. a direct flight has path length 1, flights with 
connecting flights have path length > 1

– the shortest path could be in terms of minimum weight for 
weighted graphs (example on the board.)

• e.g. finding the lowest cost flights
• Dijkstra's algorithm solves this problem



Graphs
• the shortest path could be in terms of path length (number of 

edges between vertices)
• e.g. a direct flight has path length 1, flights with 

connecting flights have path length > 1
– Initialize all lengths to infinity
– Process the graph in a BFS order starting at the given vertex
– but when visit a node, also replace its length with the 

current length.
• Example on the board

• This is just BFS while also keeping track of path lengths.


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

