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Balanced BSTs
• What does it mean to be balanced
• Why would we like them balanced
• What can we do to balance them?



• The definition of height of a node ni

– it is the length of the longest path from ni to a leaf.
– length is in terms of number of edges

• Definition of balanced
– ensure the height of the tree is O(logN) – in other words, height of 

a balanced tree is NO WORSE than a constant times logN 
– require that for any node that

• the height of its left subtree is no more than one different than
• the height of its right subtree

– the height of an empty (sub)tree is -1
– Why not require (for all nodes) that the height of left and right 

subtrees (of any node) to be equal?
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• Why not require (for all nodes) that the height of left and right 
subtrees (of any node) to be equal?

– because for an arbitrary size n (number of nodes) there may not 
exist a tree that for all nodes, that its LST and RST have equal 
heights.

– Only n's of the form n = 2k – 1 could satisfy a requirement of LST 
and RST at all nodes having equal heights.

• for instance, n=4 nodes could never satisfy that
• neither could n=5,6,9,10,11,12,13,14,17, etc.
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• Recall what a BST is.  Anyone?
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• Is any kind of balancing (size of left subtree vs. size of right subtree) 
required for BSTs?
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• Is any kind of balancing (size of left subtree vs. size of right subtree) 
required for BSTs?

– NO

• Example unbalanced tree on board.

• What are the (negative) effects of an unbalanced tree?
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• An AVL tree is a BST with the added restriction that
– for all nodes, the height of its left subtree is at most 1 different 

than the height of its right subtree.  The height of an empty subtree 
is -1.

– A node in an AVL tree contains 
• the data item, 
• reference to left child node
• reference to right child node
• height of the node
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• When we insert a node into an AVL tree we first insert as we would in 
a BST and update the height information in all the nodes on its path 
back to the root

• but there are several situations that we can encounter:
a) the tree retains the properties of an AVL tree (that is, no node has 

left and right subtrees that differ in height by more than 1)
b) or some node, alpha, along the path back to the root has subtrees 

that differ in height by 2 (stop there with the updating of height 
information) --- there are 4 cases

• 1) node inserted into LST of the LC of alpha
• 2) node inserted into RST of the LC of alpha
• 3) node inserted into LST of the RC of alpha
• 4) node inserted into RST of the RC of alpha

Note: only nodes on the path back to the root could possibly be 
affected by the insertion.

• LST = left subtree, RST = right subtree, LC = left child, RC = right child
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• Let's look at b) case 1)
b) some node, alpha, along the path back to the root has subtrees that 

differ in height by 2
• 1) node inserted into LST (left subtree) of the LC (left child) of 

alpha

• To rebalance the AVL tree in this situation, we do what is called a 
single rotation.

• Two concrete examples and then the example general situation for 
case 1 on the board.

– note: the triangles used to denote subtrees can either all be empty 
or they have relative heights as shown.
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• Let's look at b) case 4)
b) some node, alpha, along the path back to the root has subtrees that 

differ in height by 2
• 4) node inserted into RST (right subtree) of the RC (right 

child) of alpha

• To rebalance the AVL tree in this situation, again, we perform a single 
rotation.

• Example general situation for case 4 on the board.

• Case 1 and Case 4 are mirror images of each other.  As you are about 
to see, Case 2 and Case 3 are mirror images of each other.
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• Let's look at b) case 2)
b) some node, alpha, along the path back to the root has subtrees that 

differ in height by 2
• 2) node inserted into RST (right subtree) of the LC (left child) 

of alpha

• To rebalance the AVL tree in this situation, we perform what is called 
a double rotation.

• Example general situation for case 2 on the board.
• Note: either A,B,C and D are all empty OR

– One of B or C is 2 levels deeper than D
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• Let's look at b) case 3)
b) some node, alpha, along the path back to the root has subtrees that 

differ in height by 2
• 3) node inserted into LST (left subtree) of the RC (right child) 

of alpha

• To rebalance the AVL tree in this situation, we again perform a 
double rotation.
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• Now, let's go through an example.

• Insert integer items into an AVL tree (initially empty) one at a time in 
order from 1 through 7.  Then 16 through 10 and then 8 then 9.

• Recall that we insert like in a BST, but after that we need to check if it 
is still AVL or not by travelling up towards the root and checking the 
heights of the LST and RST along the way.  If we get to a position 
where a node's LST and RST differ in height by more than 1, then that 
is alpha.

• We'll mark down the following after each insertion (and perform 
rotations if necessary)

– we'll note when no rotation is necessary, still AVL
– and we'll note when a rotation is necessary and state what node 

alpha is and which case it is (1, 2, 3 or 4)
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• AVL trees cause the height of the tree to be no more than 1.44*log(n)
• So, search is O(log(n))
• Insert initially then also takes at worst log(n) and then we need to go 

up the tree setting heights and verifying heights of LST vs. RST.  If 
we go all the way up the tree that is another log(n) amount of work.  
The rebalancing takes a constant amount of time.

• So, insert is also O(log(n))

Efficiency



• Red/Black trees are another form of balanced binary search tree, that 
we will not discuss.

• There are others too.

Other Balanced Trees
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