
CS 209
Data Structures and Mathematical 

Foundations
04 / 15 / 2024

Instructor:  Michael Eckmann



Michael Eckmann  -  Skidmore 
College  -  CS 209 -  Spring 2024

Today’s Topics
• Questions?/Comments?
• Hash Tables



• Hashing is used for what?

Hashing



• Hashing is used to allow 

– inserting an item
– removing an item
– searching for an item

all in constant time (in the average case).

• Hashing does not provide efficient sorting nor efficient finding 
of the minimum or maximum item etc.

Hashing



• Let’s continue our implementation of the hash table using 
separate chaining

• Let’s count the number of collisions that happen

• Let’s consider a different hash function to hopefully reduce the 
collisions

• Let’s implement a probing style (quadratic probing) collision 
strategy for a hash table.

Hashing



• Strategies for best performance 
– want items to be distributed evenly (uniformly) throughout the 

hash table and we want few (or no) collisions
• so that depends on our data items, our choice of hash function 

and our size of the hash table
– also need to decide 

• whether to use a probing (linear or quadratic) hash table
• or separate chaining - adding the item to a linked list for the 

index (hash value)
• another method is called double hashing.

– if choices are done well we get the retrieval time to be a constant, 
but the worst case is O(n)

– we also need to consider the computations needed to compute the 
hash value (note: this will be a constant amount of work, but we 
should avoid high constants if possible)

Hashing



• Clustering
– Why is it bad?
– How to avoid it?

• Quadratic probing (avoids it to some degree)
• Double Hashing can avoid it 

Hashing



• It is possible, with a poor choice of table size, and quadratic probing, 
we could end up never finding a spot in the table to place an item.

• For quadratic probing, if the table size is prime, then a new element 
can always be inserted if the table is at least half empty.

Hashing



• Double hashing is an open address hashing method

•   - Create a hash table as a list of items

•   - Create a hash function hashf1 that will return a hash value that we    
will call hv1 to place the item in the table.

•   - If a collision occurs, call a second hash function hashf2 which     
returns an int that we will call hv2.  Use this hv2 as the amount of     
indices to hop to find another place to put the item.

Hashing



• Example: if an item initially hashes to value hv1=5 and this causes a 
collision, then using the same item we compute hv2 to be 7 using the 
second hash function.

• We would then check if there's an open slot in 5+7=12.  If it's open, 
place the item there.  If that's not open, look in 12+7=19, and if that's 
not open continue checking 7 slots away until we find an open slot.  
Wrap around when necessary (using mod by the size of table).

• Remember the goals of hashing:

•   - we want the data to be distributed well throughout the hash table

•   - we want few collisions in the average case and the worst case

Hashing



• Another thing that must be taken care of is a situation such as this.

• Suppose we have a hash table of size 20 and all of the even numbered 
slots are filled (that is, index 0, 2, ... 18) and we are trying to insert an 
item with hv1 of 4.  This is a collision.  So if we compute hv2 to be 
say 6, 

Hashing



• ( 4+6)%20=10 is filled,

• (10+6)%20=16 is filled, 

• (16+6)%20= 2 is filled, 

• ( 2+6)%20= 8 is filled, 

• ( 8+6)%20=14 is filled, 

• (14+6)%20= 0 is filled, 

• ( 0+6)%20= 6 is filled,

• ( 6+6)%20=12 is filled,

• (12+6)%20=18 is filled,

• (18+6)%20= 4 is filled,

• ( 4+6)%20=10 (we're back where we started ...)

Hashing



• and this would go on forever, because we came back to the starting index without 

examining all the slots.  Actually in this case we examined all the filled slots, and 

ignored all the empty slots!

Hashing



• To avoid this problem, double hashing requires that the table size must 
be relatively prime with respect to the value (hv2) returned by hash2.  
This is important because this will guarantee that if there's an empty 
slot, we will eventually find it.

• Numbers that are relatively prime are those which have no common 
divisors besides 1.

• You could have a table_size which is an integer p, such that p and p-2 
are prime (twin primes).  Then the procedure is to compute hv1 to be 
some int within the range 0 to table_size-1, inclusive.  Then compute 
hv2 to be some int within the range 1 to table_size-3.

• This will guarantee that if there's an empty slot, we will find it.  This 
method was devised by Donald Knuth.

Hashing



• Strategies for best performance 
– For double hashing & quadratic probing we should have a prime 

as our table size
– Additionally for double hashing we need the second hash value to 

be relatively prime to the table_size.
• This will prevent the situation described earlier with the table 

being half full but we never looked at any of the open slots.
• The hv2 being relatively prime with table_size will guarantee 

that if there's an open slot, we will find it.

Hashing


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

