
CS 209
Data Structures and Mathematical

Foundations
04 / 10 / 2024

Instructor: Michael Eckmann

Michael Eckmann - Skidmore
College - CS 209 - Spring 2024

Today’s Topics
• Questions?/Comments?
• Quicksort

– speedup comments
– Analysis

• Hash Tables

• A typical speedup for Quicksort is to do the following:
– when we get down to some small number of elements (say 10) in our list,

instead of using quicksort on them, we do insertion sort.

• How would we alter the code we just wrote to do insertion sort when the
number of elements to sort is small?

Quicksort

• Running time and space analysis
• Worst case running time

– Happens when?
• Best case running time

– Happens when?

Quicksort

• Analysis
• Worst case

– Happens when list is divided into extremely unequal sizes each
time

– That is, when the pivot is less (or greater) than all the other
elements

– List size is divided into sizes n-1 and 0
• Best case

– Happens when list is divided in as close to half as possible each
time (close to be Mergesort’s divide)

Quicksort

• Analysis
• Worst case

– Happens when list is divided into extremely unequal sizes each
time

– That is, when the pivot is less (or greater) than all the other
elements

– List size is divided into sizes n-1 and 0
– Running time is n2

• Best case
– Happens when list is divided in as close to half as possible each

time (close to be Mergesort’s divide)
– Running time is n * lg(n)

• All cases space is O(1)

Quicksort

• Hashing is used to allow very efficient insertion (add), removal
(delete), and retrieval (search) of items.

• Consider retrieval (searching) with several structures
– To find data in an unordered linear list structure

• O(n)
– To find data in an ordered linear array

• O(log n)
– To find data in a shortest-height BST

• O(log n)
• What orders are better than log n ?

Hashing

• Hashing is used to allow

– inserting an item
– removing an item
– searching for an item

all in constant time (in the average case).

• Hashing does not provide efficient sorting nor efficient finding
of the minimum or maximum item etc.

Hashing

• We want to handle data of any type (e.g. String, int, float,
Employee records, etc.)

• Terms:
– Hash Table (a list of references to objects(items))

• table_size is the number of possible places to store data
– Hash Function (calculates a hash value (an integer) based on

some key data about the item we are adding to the hash
table.)

– Hash Value (the value returned by the hash function)
• the hash value must be an integer value within

the range: 0 to table_size – 1, inclusive
• The Hash Value is then used as the index to hash table.

Hashing

• Simple example of how to insert and retrieve items into a hash
table (this does not use a good hash function)

– Consider our items are simply integers
– Consider our Hash Function to be f(x) = x % n
– The hash function returns a hash value which is modded by

the size of our hash table list to compute the index which is
where we will store our item.

– example on the board (assume n=8, add items 24, 3, 17, 31)
• To search for a particular item in our hash table, we first

compute the hash value and look there ...

Hashing

• In our example (assume n=8, add items 24, 3, 17, 31), what if we
needed to insert item 11 into our hash?
• There'd be a collision.
• There are several strategies to handle collisions

– Assume the hash value computed was H
– the chosen strategy effects how retrieval is handled too
– Open Addressing (aka Probing)

• Place item in next open slot (linear probing)
– H+1, or H+2 or H+3 ...

• Place item in next open slot (quadratic probing)
– H+12, or H+22, or H+32, or H+42, ...

– Wraparound is allowed / required

Hashing

• There are several strategies to handle collisions
– Another technique besides Open Addressing, is Separate

chaining
• Each list element stores a reference to a linked list

• Examples of these techniques on the board.

Hashing

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

