
CS 209
Data Structures and Mathematical

Foundations
04 / 08 / 2024

Instructor: Michael Eckmann

Michael Eckmann - Skidmore
College - CS 209 - Spring 2024

Today’s Topics
• Questions?/Comments?
• Heapsort
• Quicksort

Heapsort
• The algorithm is simply:

–start with n unsorted data items
–create a maxHeap (of size n) out of these items --- store

it as a list
–set i = n -1

• swap the root (index 0) and last node (index i)
• reheapify (downward reheapification) the tree that

starts at the root (index 0) and goes to i-1 (do not
include the nodes at i and higher in the new heap)

• i = i-1
–do the above 3 steps until the size of the tree we are

heapifying is one (i=0)
–The list is now sorted from low to high.

• Let's go through an example.

Michael Eckmann - Skidmore
College - CS 209 - Spring 2024

Next assignment
• Your next assignment (to be officially assigned within

the next couple of days) --- will involve implementing
heapSort among other tasks

Michael Eckmann - Skidmore
College - CS 209 - Spring 2024

Quicksort
• Does anyone remember MergeSort? What kind of algorithm was that?

Michael Eckmann - Skidmore
College - CS 209 - Spring 2024

Quicksort
• Does anyone remember MergeSort? What kind of algorithm was that?

• Divide and Conquer

• It divided the list into equal sized halves and did MergeSort on each
half then it combined the two halves.

– Any recollection on what it did to combine/conquer the two
halves?

Michael Eckmann - Skidmore
College - CS 209 - Spring 2024

Quicksort
• Does anyone remember MergeSort? What kind of algorithm was that?

• Divide and Conquer

• It divided the list into equal sized halves and did MergeSort on each
half then it combined the two halves.

– Any recollection on what it did to combine/conquer the two
halves?

• created a new list of same size and got the original
halves merged into this new list so that the new list
was sorted. Then the new list was copied back.

Michael Eckmann - Skidmore
College - CS 209 - Spring 2024

Quicksort
• Quicksort is a Divide and Conquer sorting algorithm as well.

• It has a few distinctions from MergeSort though.

• Quicksort
– divides the list into 2 portions at each step, but these two

portions aren't necessarily the same size
– a pivot value is chosen and the elements are divided into

two sublists – one sublist containing elements less than the
pivot and the other sublist containing elements greater than
or equal to the pivot

– Also, it doesn’t have the extra space requirement that
MergeSort has. QS space: O(1), MergeSort space: O(n)

Michael Eckmann - Skidmore
College - CS 209 - Spring 2024

Quicksort
• Quicksort algorithm

– 1) if size of list, L is 0 or 1, return
– 2) pick some element in list as a pivot element
– 3) divide the remaining elements (minus the pivot) of L into two

groups, L1, those with elements less than the pivot, and L2, those
with elements greater than or equal to the pivot

– 4) sorted list is: (Quicksort(L1) followed by pivot, followed by
Quicksort(L2))

• Depending on which is the pivot element, the sizes of the two sides could
differ greatly.

• Unlike MergeSort, Quicksort does not guarantee equal size portions to
sort (which is bad.) But, the divide stage can be done in-place (without
any additional space, which is good.)

Michael Eckmann - Skidmore
College - CS 209 - Spring 2024

Quicksort
• Choosing the pivot

– to pick some element in list as a pivot element we can
• pick the first (bad if list is almost sorted, why?)
• pick a random one (random # generation could be

time consuming – high constant factor)
• pick the pivot that is the median of 3 elements (say

the median of the first, middle and last element)
– not much extra work
– the almost sorted case isn't a problem for this

Michael Eckmann - Skidmore
College - CS 209 - Spring 2024

Quicksort
• Divide strategy – how to divide our list into two sublists of less than

pivot and greater than pivot (assume all elements distinct for now)

• The following strategy gives good results.

Michael Eckmann - Skidmore
College - CS 209 - Spring 2024

Quicksort
• Divide strategy

– 1) swap the pivot with the last in the list
– 2) start index i pointing to first in list and index j to next to last

element
– 3) while (element at i < pivot)

increment i
– 4) while (element at j >= pivot)

decrement j
– 5) if (i < j) element at i is > pivot and element at j is < pivot so,

we swap them and repeat from step 3.
– 6) when i > j, we swap the pivot that is in the last place with the

element at i.

Let's see an example: 4,20,5,7,16,18,22,3,1,8,25,30,40,15 (and let's always

choose the last element as the pivot, first time it is 15)

• Let's write Quicksort
– We can make quicksort be a recursive method that takes in

• a list
• the starting index of the data to be sorted
• the ending index of the data to be sorted

– quicksort can partition the elements
• find a pivot and divide a (portion of a) list into elements less than

pivot, followed by pivot, followed by elements greater than pivot
• This can be a function that will take in

– a list
– the starting index of the data to be sorted
– the ending index of the data to be sorted

• and it will return the pivot index and alter the order of the elements of
a subset of the list passed in

Quicksort

• A typical speedup for Quicksort is to do the following:
– when we get down to some small number of elements (say 10) in our list,

instead of using quicksort on them, we do insertion sort.

• How would we alter the code we just wrote to do insertion sort when the
number of elements to sort is small?

Quicksort

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

