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Today’s Topics
• Questions?/Comments?
• Heapsort
• Quicksort



Heapsort
• The algorithm is simply:

–start with n unsorted data items
–create a maxHeap (of size n) out of these items --- store 

it as a list
–set i = n -1

• swap the root (index 0) and last node (index i)
• reheapify (downward reheapification) the tree that 

starts at the root (index 0) and goes to i-1 (do not 
include the nodes at i and higher in the new heap)

• i = i-1
–do the above 3 steps until the size of the tree we are 

heapifying is one (i=0)
–The list is now sorted from low to high.

• Let's go through an example.
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Next assignment
• Your next assignment (to be officially assigned within 

the next couple of days) --- will involve implementing 
heapSort among other tasks
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Quicksort
• Does anyone remember MergeSort?  What kind of algorithm was that?
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Quicksort
• Does anyone remember MergeSort?  What kind of algorithm was that?

• Divide and Conquer

• It divided the list into equal sized halves and did MergeSort on each 
half then it combined the two halves.

– Any recollection on what it did to combine/conquer the two 
halves?
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Quicksort
• Does anyone remember MergeSort?  What kind of algorithm was that?

• Divide and Conquer

• It divided the list into equal sized halves and did MergeSort on each 
half then it combined the two halves.

– Any recollection on what it did to combine/conquer the two 
halves?

• created a new list of same size and got the original 
halves merged into this new list so that the new list 
was sorted.  Then the new list was copied back.
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Quicksort
• Quicksort is a Divide and Conquer sorting algorithm as well.

• It has a few distinctions from MergeSort though.  

• Quicksort
– divides the list into 2 portions at each step, but these two 

portions aren't necessarily the same size
– a pivot value is chosen and the elements are divided into 

two sublists – one sublist containing elements less than the 
pivot and the other sublist containing elements greater than 
or equal to the pivot

– Also, it doesn’t have the extra space requirement that 
MergeSort has.  QS space: O(1), MergeSort space: O(n)
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Quicksort
• Quicksort algorithm

– 1) if size of list, L is 0 or 1, return
– 2) pick some element in list as a pivot element
– 3) divide the remaining elements (minus the pivot) of L into two 

groups, L1, those with elements less than the pivot, and L2, those 
with elements greater than or equal to the pivot

– 4) sorted list is: (Quicksort(L1) followed by pivot, followed by 
Quicksort(L2))

• Depending on which is the pivot element, the sizes of the two sides could 
differ greatly.

• Unlike MergeSort, Quicksort does not guarantee equal size portions to 
sort (which is bad.)  But, the divide stage can be done in-place (without 
any additional space, which is good.)



Michael Eckmann  -  Skidmore 
College  -  CS 209 -  Spring 2024

Quicksort
• Choosing the pivot

– to pick some element in list as a pivot element we can 
• pick the first (bad if list is almost sorted, why?)
• pick a random one (random # generation could be 

time consuming – high constant factor)
• pick the pivot that is the median of 3 elements (say 

the median of the first, middle and last element) 
– not much extra work
– the almost sorted case isn't a problem for this
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Quicksort
• Divide strategy – how to divide our list into two sublists of less than 

pivot and greater than pivot (assume all elements distinct for now)

• The following strategy gives good results.
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Quicksort
• Divide strategy

– 1) swap the pivot with the last in the list
– 2) start index i pointing to first in list and index j to next to last 

element
– 3) while (element at i < pivot)

increment i 
– 4) while (element at j >= pivot)

decrement j
– 5) if (i < j)  element at i is > pivot and element at j is < pivot so, 

we swap them and repeat from step 3.
– 6) when i > j, we swap the pivot that is in the last place with the 

element at i.

Let's see an example: 4,20,5,7,16,18,22,3,1,8,25,30,40,15 (and let's always 

choose the last element as the pivot, first time it is 15) 



• Let's write Quicksort
– We can make quicksort be a recursive method that takes in 

• a list
• the starting index of the data to be sorted
• the ending index of the data to be sorted 

– quicksort can partition the elements 
• find a pivot and divide a (portion of a) list into elements less than 

pivot, followed by pivot, followed by elements greater than pivot
• This can be a function that will take in 

– a list
– the starting index of the data to be sorted
– the ending index of the data to be sorted 

• and it will return the pivot index and alter the order of the elements of 
a subset of the list passed in

Quicksort



• A typical speedup for Quicksort is to do the following:
– when we get down to some small number of elements (say 10) in our list, 

instead of using quicksort on them, we do insertion sort.

• How would we alter the code we just wrote to do insertion sort when the 
number of elements to sort is small?

Quicksort
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