CS 209
Data Structures and Mathematical

Foundations

04 /03 /2024

Instructor: Michael Eckmann



Today’s Topics
* Questions?/Comments?

* Priority Queues
— Binary Heaps

Michael Eckmann - Skidmore
College - CS 209 - Fall 2023



Next data structures

* Priority Queues
* Heap

Michael Eckmann - Skidmore
College - CS 209 - Fall 2023



Queues and Stacks

FIFO

Enqueue (to one side)
Dequeue (from other side)
Empty?

LIFO

Push (to top)
Pop (from top)
Peek

Empty?



Priority Queues

* The main difference between a Queue and a Priority

Queue 1s that

— In a Queue, an 1tem will be dequeued based on the
order 1n which 1t was enqueued

— In a Priority Queue

Every item 1s enqueued with a priority value
Higher priority items have preference when
dequeuing

Items with the same priority can be
enqueued / dequeued 1n any order



Priority Queues

* Priority queues have the following characteristics

—FEach item placed into a priority queue has a priority
value associated with 1t

—When a dequeue 1s requested from a priority queue, we
dequeue the highest priority item (if there are multiple
items with this same highest C{)riorlty value, then any
one of those can be dequeued)

—We need a way to determine if the priority queue is
empty

—We can also have a peek to see what item will be
dequeued next but without removing it



Priority Queues

* One common implementation of a priority queue 1s with a
binary heap.

* We will discuss binary heaps now.



Heaps

* A binary heap 1s a binary tree in which the arrangement of
the values 1n the heap adhere to the following rules.

—1) the element 1n each node 1s >= the elements of that
node's children

—2) the tree 1s complete -

* every level except the deepest must contain as many
nodes as possible

* and at the deepest level all the nodes are as far left
(in that level) as possible

* Rule 1 above 1s for maxHeaps, but if change that rule such
that a node 1s <= children, then 1t 1s called a minHeap

* Examples of heaps and non-heaps on the board.

* Differentiate heaps from BSTs.



Heaps

* Besides the node style implementation of binary trees
(look back at BSTNode and BST classes), a binary tree
can be implemented with a list.

* The list implementation works well for complete binary
trees. Example on the board.

* Node [1] has 1ts children (1f they exist) at
* left child: [21+1]
* right child: [21+2]

* If Node [i] 1s not the root, then Node [1]'s parent is at
* [(1-1)//2]



Heaps

* To 1nsert a new node 1nto a heap

—111) after the node 1s nserted the structure still must be a
eap

* that 1s 1t must still be a complete binary tree

* with the element in each node >= the elements of
that node's children

—Any 1deas on how to do this, efficiently?



Heaps

* To 1nsert a new node 1nto a heap

—Place the node 1n the next open slot (deepest level and
as far to the left as possible) ---- when this is done the
tree 1s complete

—Then, check that node against its parent and swap 1f
necessary (when a node's parent 1s < the node).
Continue to do this until we don't need to swap or we
reach the root.

—When this process 1s done, we will have a heap.

* The process of rising a node 1nto 1ts proper place 1s
(upward) reheapification. To heapify 1s to start with a
complete binary tree (the result of the first step above) that
may not be a heap and make 1t a heap.



Heaps

* To delete the root from the heap

— 1) after the root 1s removed from the heap, the structure
still must be a heap

* that 1s 1t must still be a complete binary tree

* with the element in each node >= the elements of
that node's children

—Any 1deas on how to do this, efficiently?



Heaps

* To remove the root from the heap

—1f the tree consists of only one node, the result 1s an empty
tree which 1s a heap and we are done

—1f the tree consists of more than one node, then move the
last element (the one furthest to the right in the deepest
level) to the root

* now we have a complete binary tree with one fewer
nodes

* but it may not be a heap, so we need to heapity, 1.e. do
(downward) reheapification.

* Let's name the element that moved to the root the out-
of-place node

* while (out-of-place node 1s < one of its children)
—swap the out-of-place node with its larger child
—out-of-place node 1s now where the larger child was
—Do this until no swap occurs or when reach a leaf




Heaps
* Heaps can be used to implement Priority Queues
—Main operations of a priority queue
* remove (highest priority item)
— dequeue
* add

— enqueue

* For a Heap implementation of a priority queue, we would
remove from the root (and then make sure the heap
remains a heap by the process we described earlier.)

* For add, we would place at last slot and upward reheapify.



Heaps
* Heaps are not used for searching (inefficient), nor are they
used for anything other than what they are designed for.

* Let's analyze runtime for remove largest (in a max heap)
and add for heaps.



Heaps

* Let's create a class (named ItemAndPriority) that holds a
data 1tem of some type, and a priority value (int).

* Then let's create a class Heap that stores objects of them 1n

a heap (implemented as a list).

* This Heap then can be used as a priority queue based on
the priority value in the ItemAndPriority class.



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

