
CS 209
Data Structures and Mathematical

Foundations
04 / 03 / 2024

Instructor: Michael Eckmann

Michael Eckmann - Skidmore
College - CS 209 - Fall 2023

Today’s Topics
• Questions?/Comments?
• Priority Queues

– Binary Heaps

Michael Eckmann - Skidmore
College - CS 209 - Fall 2023

Next data structures

• Priority Queues
• Heap

Queues and Stacks
• Queue

– FIFO
– Enqueue (to one side)
– Dequeue (from other side)
– Empty?

• Stack
– LIFO
– Push (to top)
– Pop (from top)
– Peek
– Empty?

Priority Queues
• The main difference between a Queue and a Priority

Queue is that
– In a Queue, an item will be dequeued based on the

order in which it was enqueued
– In a Priority Queue

• Every item is enqueued with a priority value
• Higher priority items have preference when

dequeuing
• Items with the same priority can be

enqueued / dequeued in any order

Priority Queues
• Priority queues have the following characteristics

– Each item placed into a priority queue has a priority
value associated with it

– When a dequeue is requested from a priority queue, we
dequeue the highest priority item (if there are multiple
items with this same highest priority value, then any
one of those can be dequeued)

– We need a way to determine if the priority queue is
empty

– We can also have a peek to see what item will be
dequeued next but without removing it

Priority Queues
• One common implementation of a priority queue is with a

binary heap.
• We will discuss binary heaps now.

Heaps
• A binary heap is a binary tree in which the arrangement of

the values in the heap adhere to the following rules.
– 1) the element in each node is >= the elements of that

node's children
– 2) the tree is complete -

• every level except the deepest must contain as many
nodes as possible

• and at the deepest level all the nodes are as far left
(in that level) as possible

• Rule 1 above is for maxHeaps, but if change that rule such
that a node is <= children, then it is called a minHeap
• Examples of heaps and non-heaps on the board.
• Differentiate heaps from BSTs.

Heaps
• Besides the node style implementation of binary trees

(look back at BSTNode and BST classes), a binary tree
can be implemented with a list.
• The list implementation works well for complete binary

trees. Example on the board.
• Node [i] has its children (if they exist) at

• left child: [2i+1]
• right child: [2i+2]

• If Node [i] is not the root, then Node [i]'s parent is at
• [(i-1)//2]

Heaps
• To insert a new node into a heap

– 1) after the node is inserted the structure still must be a
heap

• that is it must still be a complete binary tree
• with the element in each node >= the elements of

that node's children
– Any ideas on how to do this, efficiently?

Heaps
• To insert a new node into a heap

– Place the node in the next open slot (deepest level and
as far to the left as possible) ---- when this is done the
tree is complete

– Then, check that node against its parent and swap if
necessary (when a node's parent is < the node).
Continue to do this until we don't need to swap or we
reach the root.

– When this process is done, we will have a heap.

• The process of rising a node into its proper place is
(upward) reheapification. To heapify is to start with a
complete binary tree (the result of the first step above) that
may not be a heap and make it a heap.

Heaps
• To delete the root from the heap

– 1) after the root is removed from the heap, the structure
still must be a heap

• that is it must still be a complete binary tree
• with the element in each node >= the elements of

that node's children
– Any ideas on how to do this, efficiently?

Heaps
• To remove the root from the heap

– if the tree consists of only one node, the result is an empty
tree which is a heap and we are done

– if the tree consists of more than one node, then move the
last element (the one furthest to the right in the deepest
level) to the root

• now we have a complete binary tree with one fewer
nodes

• but it may not be a heap, so we need to heapify, i.e. do
(downward) reheapification.

• Let's name the element that moved to the root the out-
of-place node

• while (out-of-place node is < one of its children)
– swap the out-of-place node with its larger child
– out-of-place node is now where the larger child was
– Do this until no swap occurs or when reach a leaf

Heaps
• Heaps can be used to implement Priority Queues

– Main operations of a priority queue
• remove (highest priority item)

– dequeue
• add

– enqueue
• For a Heap implementation of a priority queue, we would

remove from the root (and then make sure the heap
remains a heap by the process we described earlier.)
• For add, we would place at last slot and upward reheapify.

Heaps
• Heaps are not used for searching (inefficient), nor are they

used for anything other than what they are designed for.
• Let's analyze runtime for remove largest (in a max heap)

and add for heaps.

Heaps
• Let's create a class (named ItemAndPriority) that holds a

data item of some type, and a priority value (int).
• Then let's create a class Heap that stores objects of them in

a heap (implemented as a list).
• This Heap then can be used as a priority queue based on

the priority value in the ItemAndPriority class.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

