
CS 209
Data Structures and Mathematical

Foundations
03 / 22 / 2024

Instructor: Michael Eckmann

Michael Eckmann - Skidmore
College - CS 209 - Spring 2024

Today’s Topics
• Questions/Comments?
• More Recursion
• Change making algorithm and memoization

applied

Recursion
• 1. have at least one base case that is not recursive
• 2. recursive case(s) must progress towards the base case
• 3. trust that your recursive call does what it says it will do

(without having to unravel all the recursion in your head.)
• 4. try not to do redundant work. That is, in different

recursive calls, don't recalculate the same info.

Recursion
• Let’s write find_max iteratively and then again recursively

Recursion
• Change making algorithms.

– Problem: have some amount of money for which you
need to make change in the fewest coins possible.

– You have unlimited numbers of coins C1 ... CN each
with different values.

• example: make change for .63 and the coins you have are
C1 =.01, C2 =.05, C3 =.10, and C4 =.25 only.

• We always assume we have .01 coin to guarantee a way to
make change for any amounts.

• ideas?

Recursion
• Change making algorithms.

– Problem: have some amount of money for which you
need to make change in the fewest coins possible.

– You have unlimited numbers of coins C1 ... CN each
with different values.

• example: make change for .63 and the coins you have are
C1 =.01, C2 =.05, C3 =.10, and C4 =.25 only.

• The algorithm that works for these denominations is a
greedy algorithm (that is, one that makes an optimal
choice at each step to achieve the optimal solution to the
whole problem.) Let's write it in Python.

Recursion
• What if : make change for .63 and the coins you have are

C1 =.01, C2 =.05, C3 =.10, C4 =.21 and C5 =.25 only.

• A 21 cent piece comes into the picture.

Recursion
• What if : make change for .63 and the coins you have are

C1 =.01, C2 =.05, C3 =.10, C4 =.21 and C5 =.25 only.

• A 21 cent piece comes into the picture.
• The greedy algorithm doesn't work in this case because

the minimum is 3 coins all of C4 =.21 whereas the greedy
algorithm would yield 2 .25's, 1 .10 and 3 .01's for a
total of 6 coins.

Recursion
• So, we want to create a way to solve the minimum # of coins

problem with n arbitrary coin denominations.
• A recursive strategy is:

– BASE CASE: If the change K, we're trying to make is exactly
equal to any coin denomination, then we only need 1 coin.

– RECURSIVE STEP: Otherwise, we can say the fewest coins is
the minimum of

• 1 + fewestcoins(K – C1)
• 1 + fewestcoins(K – C2)
• .
• .
• or
• 1 + fewestcoins(K – Cn)

Recursion
• split the total into parts and solve those parts recursively.

– e.g.
– fewcoins = 1 + fewestcoins(63-1=62)
– Or
– Fewcoins = 1 + fewestcoins(63-5=58)
– Or
– Fewcoins = 1 + fewestcoins(63-10=53)
– Or
– Fewcoins = 1 + fewestcoins(63-21=42)
– Or
– Fewcoins = 1 + fewestcoins(63-25=38)

Recursion
• split the total into parts and solve those parts recursively.

– The base case of the recursion is when the change we
are making is equal to one of the coins – hence 1 coin.

– Otherwise recurse.
– Why is this bad?

Recursion
• split the total into parts and solve those parts recursively.

– The base case of the recursion is when the change we
are making is equal to one of the coins – hence 1 coin.

– Otherwise recurse.
– Why is this bad? It makes many redundant calls.
– Let's see (let's try to make change for some amounts

with a Python implementation of this.)

Recursion
• The major problem with that change making algorithm is

that it makes so many recursive calls and it duplicates
work already done.

• But just like we did for fibonacci, we can use
memoization.

• Instead of making recursive calls to figure out something
that we already figured out we compute it once and save
the value in a table for lookup when we need it later.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

