CS 209
Data Structures and Mathematical

Foundations

03/22/2024

Instructor: Michael Eckmann



Today’s Topics
* Questions/Comments?
* More Recursion

* Change making algorithm and memoization
applied

Michael Eckmann - Skidmore
College - CS 209 - Spring 2024



Recursion

* 1. have at least one base case that 1s not recursive
* 2. recursive case(s) must progress towards the base case

* 3. trust that your recursive call does what 1t says i1t will do
(without having to unravel all the recursion in your head.)

* 4. try not to do redundant work. That 1s, in different
recursive calls, don't recalculate the same info.



Recursion

* Let’s write find max iteratively and then again recursively



Recursion

Change making algorithms.

—Problem: have some amount of money for which you
need to make change 1n the fewest coins possible.

—You have unlimited numbers of coins C ..C, each
with different values.

example: make change for .63 and the coins you have are
C =.01,C, =05, C,=.10,and C, =25 only.

We always assume we have .01 coin to guarantee a way to
make change for any amounts.

1deas?



Recursion

* Change making algorithms.

—Problem: have some amount of money for which you
need to make change 1n the fewest coins possible.

—You have unlimited numbers of coins C ..C, each
with different values.

* example: make change for .63 and the coins you have are
C =.01,C, =05, C,=.10,and C, =25 only.

* The algorithm that works for these denominations 1s a
greedy algorithm (that 1s, one that makes an optimal
choice at each step to achieve the optimal solution to the
whole problem.) Let's write it in Python.



Recursion

* What 1f : make change for .63 and the coins you have are
C =.01,C, =05, C, =10,C,=21 and C =25 only.

* A 21 cent piece comes into the picture.



Recursion

* What 1f : make change for .63 and the coins you have are
C =.01,C, =05,C, =10,C,=21 and C, =25 only.

* A 21 cent piece comes into the picture.

* The greedy algorithm doesn't work 1n this case because
the minimum 1s 3 comns all of C, =.21 whereas the greedy

algorithm would yield 2 .25's, 1 .10 and 3 .01's for a
total of 6 coins.



Recursion

* So, we want to create a way to solve the minimum # of coins
problem with n arbitrary coin denominations.

* A recursive strategy 1is:

—BASE CASE: If the change K, we're trying to make 1s exactly
equal to any coin denomination, then we only need 1 coin.

—RECURSIVE STEP: Otherwise, we can say the fewest coins 1s
the minimum of
* 1+ fewestcoins(K — Cl1)
1 + fewestcoins(K — C2)

* or
1 + fewestcoins(K — Cn)



Recursion

* split the total into parts and solve those parts recursively.
:efeg\;vcoins = 1 + fewestcoins(63-1=62)
: lg);wcoins = ] + fewestcoins(63-5=58)
:(lgrewcoins = 1 + fewestcoins(63-10=53)
:gerwcoins =1 + fewestcoins(63-21=42)
:gerwcoins = 1 + fewestcoins(63-25=38)



Recursion

split the total into parts and solve those parts recursively.

—The base case of the recursion is when the change we
are making 1s equal to one of the coins — hence 1 coin.

—Otherwise recurse.
—Why 1s this bad?



Recursion

* split the total into parts and solve those parts recursively.

—The base case of the recursion is when the change we
are making 1s equal to one of the coins — hence 1 coin.

—Otherwise recurse.
—Why 1s this bad? It makes many redundant calls.

—Let's see (let's try to make change for some amounts
with a Python implementation of this.)



Recursion
* The major problem with that change making algorithm 1s
that 1t makes so many recursive calls and it duplicates
work already done.

* But just like we did for fibonacci, we can use
memoization.

* Instead of making recursive calls to figure out something
that we already figured out we compute 1t once and save
the value 1n a table for lookup when we need 1t later.



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

