CS 209
Data Structures and Mathematical

Foundations

03/20/2024

Instructor: Michael Eckmann



Today’s Topics
* Questions/Comments?
* Recursion

Michael Eckmann - Skidmore
College - CS 209 - Spring 2024



Recursion

* 1. have at least one base case that 1s not recursive
* 2. recursive case(s) must progress towards the base case

* 3. trust that your recursive call does what 1t says 1t will do
(without having to unravel all the recursion in your head.)

* 4. try not to do redundant work. That is, in different
recursive calls, don't recalculate the same info.



Recursion

* Need to decide if the recursive function will return some
value, or not return a value.

* [f 1t 1s to return a value, then

—  Every call to 1t needs to capture the returned
value

— e.g. result = funrec(x)
or return funrec(x)

— And a return statement must occur for any
inputs



Recursion

The last example showed that recursion didn't really
simplify our lives, but there are times when 1t does.

e.g. If given an integer and you wanted to print the

individual digits in

order, but you didn't have the ability to

easily convert an int >10 to a string.

e.g. n=35672

If we wanted to print 3 first then 5 then 6 then 7 then 2,

we need to come u;
some mathematical

o with a way to extract those digits via
| computation.

It's easy to get the |

ast digit n%10 gives us that.

Notice: 35672 % 10=2 also 2% 10=2.
Any 1deas on a recursive way to display all the numbers 1n

order?



Recursion

def print digits(n):
1fn <10:
print(str(n), end="")
else:
print digits((n//10))
print(str(n%10), end="")

// what's the base case here?

// what's the recursive st%p here? Will it always
approach the base case’



Recursion

* Now that last problem was “made up”, because python
(and most languages) allow us to print 1nts.

* However what 1f we wanted to print the int 1n a different
base? Say base 2, 3, 4, 5, or some other base?



Recursion

Let’s go back to the fibonacci code from last time.

Any problems with that code?

Yes — 1t makes too many calls. And further, these calls
are redundant.

It violates that 4™ idea of recursion stated earlier: in
different recursive calls, don't recalculate the same 1nfo.



Recursion

* We know what a tree 1s.

* Here’s a recursive definition of a tree:

— A tree 1s empty or it has a root connected to 0 or more
subtrees.

—Note a subtree, taken on 1ts own, 1s a tree. Because a
tree 1s being defined 1n terms of other trees, it 1s a
recursive definition.



Recursion

* Let me write mnsert recursively in the BinarySearchTree
code.

* Let me also write find max iteratively and then again
recursively



Recursion

* [et’s use an 1dea called memoization to make the
fibonacci numbers code much more efficient runtime

* Idea 1s:

save computed fibonacci numbers 1n a table when
computed

when need a fibonacci number, check table first to
see 1f 1t has been computed already, 1f so use it, if
not, make recursive call



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

