
CS 209
Data Structures and Mathematical

Foundations
03 / 20 / 2024

Instructor: Michael Eckmann

Michael Eckmann - Skidmore
College - CS 209 - Spring 2024

Today’s Topics
• Questions/Comments?
• Recursion

Recursion
• 1. have at least one base case that is not recursive
• 2. recursive case(s) must progress towards the base case
• 3. trust that your recursive call does what it says it will do

(without having to unravel all the recursion in your head.)
• 4. try not to do redundant work. That is, in different

recursive calls, don't recalculate the same info.

Recursion
• Need to decide if the recursive function will return some

value, or not return a value.
• If it is to return a value, then

– Every call to it needs to capture the returned
value

– e.g. result = funrec(x)
or return funrec(x)
– And a return statement must occur for any

inputs

Recursion
• The last example showed that recursion didn't really

simplify our lives, but there are times when it does.
• e.g. If given an integer and you wanted to print the

individual digits in order, but you didn't have the ability to
easily convert an int >10 to a string.

• e.g. n=35672
• If we wanted to print 3 first then 5 then 6 then 7 then 2,

we need to come up with a way to extract those digits via
some mathematical computation.

• It's easy to get the last digit n%10 gives us that.
• Notice: 35672 % 10 = 2 also 2 % 10 = 2.
• Any ideas on a recursive way to display all the numbers in

order?

Recursion
def print_digits(n):

if n < 10:
 print(str(n), end=’’)
else:
 print_digits((n//10))

print(str(n%10), end=’’)

// what's the base case here?

// what's the recursive step here? Will it always
approach the base case?

Recursion
• Now that last problem was “made up”, because python

(and most languages) allow us to print ints.
• However what if we wanted to print the int in a different

base? Say base 2, 3, 4, 5, or some other base?

Recursion
Let’s go back to the fibonacci code from last time.

Any problems with that code?
Yes – it makes too many calls. And further, these calls

are redundant.
It violates that 4th idea of recursion stated earlier: in

different recursive calls, don't recalculate the same info.

Recursion
• We know what a tree is.
• Here’s a recursive definition of a tree:

– A tree is empty or it has a root connected to 0 or more
subtrees.

– Note a subtree, taken on its own, is a tree. Because a
tree is being defined in terms of other trees, it is a
recursive definition.

Recursion
• Let me write insert recursively in the BinarySearchTree

code.
• Let me also write find_max iteratively and then again

recursively

Recursion
• Let’s use an idea called memoization to make the

fibonacci numbers code much more efficient runtime

• Idea is:
– save computed fibonacci numbers in a table when

computed
– when need a fibonacci number, check table first to

see if it has been computed already, if so use it, if
not, make recursive call

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

