# CS 209 <br> Data Structures and Mathematical Foundations 

$$
02 / 28 / 2024
$$

Instructor: Michael Eckmann

## Today's Topics

- Questions/Comments?
- Maximum Contiguous Subsequence problem
- 3 algorithms to solve
- Analyze them each for runtime


## Algorithm Analysis

- Let's consider 1 problem and 3 ways to solve it (using 3 different algorithms) and we'll analyze the running times of each.
- The Maximum contiguous subsequence problem:
- Given an integer sequence $A_{1}, A_{2}, \ldots, A_{N}$, find (and identify the sequence corresponding to) the maximum value of $\sum_{k=i}^{j} A_{k}$. The maximum contiguous subsequence sum is zero if all are negative. Therefore, an empty sequence may be maximum.
- Example input: $\{-2, \mathbf{1 1}, \mathbf{- 4}, \mathbf{1 3},-5,2\}$ the answer is 20 and the sequence is \{ $11,-4,13$ \}
- Another: $\{1,-3, \mathbf{4}, \mathbf{- 2 , - 1 , 6}\}$ the answer is 7 , the sequence is $\{4,-2,-1,6\}$


## Algorithm Analysis

- The simplest is an exhaustive search (brute force algorithm.)
- that is, simply consider every possible subsequence and compute its sum, keep doing this and save the greatest
- so, we set the maxSum $=0(\mathrm{~b} / \mathrm{c}$ it is at least this big) and we start at the first element and consider every subsequence that begins with the first element and sum them up ... if any has a sum larger than maxSum, save this ...
- then start at second element and do the same ... and so on until start at last element
- Advantages to this: easy to implement, easy to understand
- Disadvantages to this: slow
- Let's examine the algorithm.
- decide what is a good thing to count
- count that operation (in terms of the input size)

Michael Eckmann - Skidmore<br>College - CS 209-Spring 2024

## Algorithm Analysis

- With a bit of observation it should be apparent that the line that does the summing:

$$
\text { seq_sum }=\text { seq_sum }+ \text { seq }[i]
$$

- is the one that executes most and therefore is the good thing to count.
- The two outer loops are similar to ones we had analyzed in other contexts before to know that they execute $\mathrm{n}^{*}(\mathrm{n}+1) / 2$ times. The innermost loop iterates a different number of times for each of the outer loops iterations. It iterates $n$ times, $n-1$ times twice, $n-2$ times sometimes, ...
- It turns out that the number of times the summing line executes is: $\mathrm{n}^{*}(\mathrm{n}+1)^{*}(\mathrm{n}+2) / 6$ which is a Theta $\left(\mathrm{n}^{3}\right)$ algorithm.


## Algorithm Analysis

- The exhaustive search has many unnecessary computations.
- Notice that $\sum_{\mathrm{k}=\mathrm{i}}^{\mathrm{j}} \mathrm{A}_{\mathrm{k}}=\mathrm{A}_{\mathrm{j}}+\sum_{\mathrm{k}-\mathrm{i}}^{\mathrm{j}-1} \mathrm{~A}_{\mathrm{k}}$
- That is, if we know the sum of the first $j-1$ elements, then the sum of the first j elements is found just by adding in the j th element.
- Knowing that, the problem can be solved more efficiently by the algorithm that we are about to write and analyze.
- We won't need to keep adding up a sequence from scratch


## Algorithm Analysis

- The second algorithm that we'll analyze uses the improvement just mentioned and the running time improves (goes down.)


## Algorithm Analysis

- A further improvement can come if we realize that if a subsequence has a negative sum, it will not be the first part of the maximum subsequence.
- Why?
- Also, all contiguous subsequences bordering a maximum contiguous subsequence must have negative or 0 sums.
- why?


## Algorithm Analysis

- A further improvement can come if we realize that if a subsequence has a negative sum, it will not be the first part of the maximum subsequence.
- Why?
- A negative value will only bring the total down
- Also, all contiguous subsequences bordering a maximum contiguous subsequence must have negative or 0 sums.
- why?
- If they were $>0$, they would be attached to the maximum sequence (thereby giving it a larger sum).


## Algorithm Analysis

- While computing the sum of a subsequence, if at any time the sum becomes negative, we start considering sequences only starting at the next element.
- Let's write this algorithm and determine the running time of it.


## Algorithm Analysis

- What's the point of that exercise:
- 1) get a feel for how to count how much work is being done in an algorithm
-2 ) it is sometimes possible to create a reduced running time algorithm by exploiting facts about the problem.
-3) it is good to think about such things in a course that mainly deals with data structures. Any guesses as to why I say this?
-4) it takes some thinking to exploit some things about the problem to make a more efficient algorithm


## Proof by induction

Prove that $2^{0}+2^{1}+\ldots+2^{\mathrm{n}}=2^{(\mathrm{n}+1)}-1$ (call this proposition: $\mathrm{P}(\mathrm{n})$ )
Base case: when $\mathrm{n}=0$ (show that $\mathrm{P}(0)$ is true)
$2^{0}=1$
And $2^{(0+1)}-1=2-1=1$. These are equal so $\mathrm{P}(0)$ is true. Induction step:
Assume that $\mathrm{P}(\mathrm{k})$ is true: $2^{0}+2^{1}+\ldots+2^{\mathrm{k}}=2^{(\mathrm{k}+1)}-1$ Try to show that $\mathrm{P}(\mathrm{k}+1)$ is true.
$2^{0}+2^{1}+\ldots+2^{k}+2^{k+1}$
$=2^{(k+1)}-1+2^{k+1}$
$=2 * 2^{(k+1)}-1=2^{(k+2)}-1$ This shows that $P(k+1)$ is true.

