CS 209
Data Structures and Mathematical

Foundations

02/28/2024

Instructor: Michael Eckmann



Today’s Topics
* Questions/Comments?
* Maximum Contiguous Subsequence problem
— 3 algorithms to solve
— Analyze them each for runtime

Michael Eckmann - Skidmore
College - CS 209 - Spring 2024



Algorithm Analysis

Let's consider 1 problem and 3 ways to solve it (using 3 different algorithms)

and we'll analyze the running times of each.

The Maximum contiguous subsequence problem:

— Given an integer sequence A , A, ..., A, find (and identify the sequence
corresponding to) the maximum value of 27 A . The maximum

contiguous subsequence sum is zero if all are negative. Therefore, an
empty sequence may be maximum.

Example input: { -2, 11, -4, 13, -5, 2 } the answer 1s 20 and the sequence 1s
{11,-4,13}

Another: { 1, -3, 4, -2, -1, 6 } the answer 1s 7, the sequence is { 4, -2, -1, 6 }

Michael Eckmann - Skidmore
College - CS 209 - Spring 2024



Algorithm Analysis

* The simplest is an exhaustive search (brute force algorithm.)

— that 1s, simply consider every possible subsequence and compute its
sum, keep doing this and save the greatest

— so, we set the maxSum = 0 (b/c it is at least this big) and we start at
the first element and consider every subsequence that begins with the
first element and sum them up ... it any has a sum larger than
maxSum, save this ...

— then start at second element and do the same ... and so on until start at
last element

* Advantages to this: easy to implement, easy to understand
* Disadvantages to this: slow

* Let's examine the algorithm.
— decide what is a good thing to count

— count that operation (in terms of the input size)

Michael Eckmann - Skidmore
College - CS 209 - Spring 2024



Algorithm Analysis
With a bit of observation it should be apparent that the line that does the
summing:
seq _sum = seq_sum + seq[1]

is the one that executes most and therefore 1s the good thing to count.

The two outer loops are similar to ones we had analyzed in other
contexts before to know that they execute n*(n+1)/2 times. The
innermost loop iterates a different number of times for each of the outer
loops iterations. It iterates n times, n-1 times twice, n-2 times

sometimes, ...

It turns out that the number of times the summing line executes is:

n*(n+1)*(n+2)/6 which is a Theta(n?®) algorithm.

Michael Eckmann - Skidmore
College - CS 209 - Spring 2024



Algorithm Analysis

The exhaustive search has many unnecessary computations.

Notice that 21 _ A = A, +2X1 A

That 1s, 1if we know the sum of the first j-1 elements, then the sum of

the first j elements 1s found just by adding in the jth element.

Knowing that, the problem can be solved more efficiently by the

algorithm that we are about to write and analyze.
— We won't need to keep adding up a sequence from scratch

Michael Eckmann - Skidmore
College - CS 209 - Spring 2024



Algorithm Analysis

* The second algorithm that we'll analyze uses the improvement just

mentioned and the running time improves (goes down.)

Michael Eckmann - Skidmore
College - CS 209 - Spring 2024



Algorithm Analysis

* A further improvement can come if we realize that if a subsequence has
a negative sum, it will not be the first part of the maximum
subsequence.

— Why?
* Also, all contiguous subsequences bordering a maximum contiguous

subsequence must have negative or 0 sumes.
— why?

Michael Eckmann - Skidmore
College - CS 209 - Spring 2024



Algorithm Analysis

* A further improvement can come if we realize that if a subsequence has
a negative sum, it will not be the first part of the maximum

subsequence.
— Why?
— A negative value will only bring the total down

* Also, all contiguous subsequences bordering a maximum contiguous

subsequence must have negative or 0 sums.
— why?

— If the%rjwere >0, theY would be attached to the maximum sequence
(thereby giving it a larger sum).

Michael Eckmann - Skidmore
College - CS 209 - Spring 2024



Algorithm Analysis

* While computing the sum of a subsequence, if at any time the sum
becomes negative, we start considering sequences only starting at the

next element.

* Let's write this algorithm and determine the running time of it.

Michael Eckmann - Skidmore
College - CS 209 - Spring 2024



Algorithm Analysis

* What's the point of that exercise:

— 1) get a feel for how to count how much work 1s being done in an
algorithm

— 2) 1t is sometimes possible to create a reduced running time
algorithm by exploiting facts about the problem.

— 3) 1t is good to think about such things in a course that mainly deals
with data structures. Any guesses as to why I say this?

— 4) it takes some thinking to exploit some things about the problem
to make a more efficient algorithm

Michael Eckmann - Skidmore
College - CS 209 - Spring 2024



Proof by induction

Prove that 2°+ 2! + .., + 2= 20D 1 (call this
proposition: P(n))
Base case: when n=0 (show that P(0) 1s true)
20=1
And 20D —1=2 —1=1. These are equal so P(0) is true.
Induction step:
Assume that P(k) 1s true: 2°+ 2"+ ... +2k=20D ]
Try to show that P(k+1) 1s true.

204+ 21+ .+ 2K+ 2K
— 2(k+1) . 1 + 2k+1
= 2#¥20D) 1 =22 _ 1 This shows that P(k+1) 1s true.

Michael Eckmann - Skidmore
College - CS 209 - Spring 2024



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

