
CS 209
Data Structures and Mathematical

Foundations
02 / 28 / 2024

Instructor: Michael Eckmann

Michael Eckmann - Skidmore
College - CS 209 - Spring 2024

Today’s Topics
• Questions/Comments?
• Maximum Contiguous Subsequence problem

– 3 algorithms to solve
– Analyze them each for runtime

Algorithm Analysis
• Let's consider 1 problem and 3 ways to solve it (using 3 different algorithms)

and we'll analyze the running times of each.

• The Maximum contiguous subsequence problem:

– Given an integer sequence A1, A2, ..., AN, find (and identify the sequence

corresponding to) the maximum value of j
k=i Ak . The maximum

contiguous subsequence sum is zero if all are negative. Therefore, an
empty sequence may be maximum.

• Example input: { -2, 11, -4, 13, -5, 2 } the answer is 20 and the sequence is

{ 11, -4, 13 }

• Another: { 1, -3, 4, -2, -1, 6 } the answer is 7, the sequence is { 4, -2, -1, 6 }

Michael Eckmann - Skidmore
College - CS 209 - Spring 2024

Algorithm Analysis
• The simplest is an exhaustive search (brute force algorithm.)

– that is, simply consider every possible subsequence and compute its
sum, keep doing this and save the greatest

– so, we set the maxSum = 0 (b/c it is at least this big) and we start at
the first element and consider every subsequence that begins with the
first element and sum them up ... if any has a sum larger than
maxSum, save this ...

– then start at second element and do the same ... and so on until start at
last element

• Advantages to this: easy to implement, easy to understand

• Disadvantages to this: slow

• Let's examine the algorithm.
– decide what is a good thing to count
– count that operation (in terms of the input size)

Michael Eckmann - Skidmore
College - CS 209 - Spring 2024

Algorithm Analysis
• With a bit of observation it should be apparent that the line that does the

summing:
seq_sum = seq_sum + seq[i]

• is the one that executes most and therefore is the good thing to count.

• The two outer loops are similar to ones we had analyzed in other
contexts before to know that they execute n*(n+1)/2 times. The
innermost loop iterates a different number of times for each of the outer
loops iterations. It iterates n times, n-1 times twice, n-2 times
sometimes, ...

• It turns out that the number of times the summing line executes is:
n*(n+1)*(n+2)/6 which is a Theta(n3) algorithm.

Michael Eckmann - Skidmore
College - CS 209 - Spring 2024

Algorithm Analysis
• The exhaustive search has many unnecessary computations.

• Notice that j
k=i Ak = Aj + j-1

k=i Ak

• That is, if we know the sum of the first j-1 elements, then the sum of
the first j elements is found just by adding in the jth element.

• Knowing that, the problem can be solved more efficiently by the
algorithm that we are about to write and analyze.

– We won't need to keep adding up a sequence from scratch

Michael Eckmann - Skidmore
College - CS 209 - Spring 2024

Algorithm Analysis
• The second algorithm that we'll analyze uses the improvement just

mentioned and the running time improves (goes down.)

Michael Eckmann - Skidmore
College - CS 209 - Spring 2024

Algorithm Analysis
• A further improvement can come if we realize that if a subsequence has

a negative sum, it will not be the first part of the maximum
subsequence.

– Why?

• Also, all contiguous subsequences bordering a maximum contiguous
subsequence must have negative or 0 sums.

– why?

Michael Eckmann - Skidmore
College - CS 209 - Spring 2024

Algorithm Analysis
• A further improvement can come if we realize that if a subsequence has

a negative sum, it will not be the first part of the maximum
subsequence.

– Why?
– A negative value will only bring the total down

• Also, all contiguous subsequences bordering a maximum contiguous
subsequence must have negative or 0 sums.

– why?
– If they were >0, they would be attached to the maximum sequence

(thereby giving it a larger sum).

Michael Eckmann - Skidmore
College - CS 209 - Spring 2024

Algorithm Analysis
• While computing the sum of a subsequence, if at any time the sum

becomes negative, we start considering sequences only starting at the
next element.

• Let's write this algorithm and determine the running time of it.

Michael Eckmann - Skidmore
College - CS 209 - Spring 2024

Algorithm Analysis
• What's the point of that exercise:

– 1) get a feel for how to count how much work is being done in an
algorithm

– 2) it is sometimes possible to create a reduced running time
algorithm by exploiting facts about the problem.

– 3) it is good to think about such things in a course that mainly deals
with data structures. Any guesses as to why I say this?

– 4) it takes some thinking to exploit some things about the problem
to make a more efficient algorithm

Michael Eckmann - Skidmore
College - CS 209 - Spring 2024

Proof by induction
Prove that 20 + 21 + … + 2n = 2(n+1) – 1 (call this
proposition: P(n))
Base case: when n=0 (show that P(0) is true)
20 = 1
And 2(0+1) – 1 = 2 – 1 = 1. These are equal so P(0) is true.
Induction step:
Assume that P(k) is true: 20 + 21 + … + 2k = 2(k+1) – 1
Try to show that P(k+1) is true.
 20 + 21 + … + 2k + 2k+1

= 2(k+1) – 1 + 2k+1

= 2*2(k+1) – 1 = 2(k+2) – 1 This shows that P(k+1) is true.
Michael Eckmann - Skidmore
College - CS 209 - Spring 2024

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

