
CS 209
Data Structures and Mathematical

Foundations
02 / 26 / 2024

Instructor: Michael Eckmann

Michael Eckmann - Skidmore
College - CS 209 - Spring 2024

Today’s Topics
• Questions/Comments?
• More Big O, Big Theta, Big Omega discussion and

examples

Asymptotic notation
• Recap
• If f(n) is O(g(n)) we say that g is what kind of

bound on f?
• If f(n) is Omega(g(n)) we say that g is what kind

of bound on f?
• If f(n) is Theta(g(n)) we say that g is what kind

of bound on f?

Michael Eckmann - Skidmore
College - CS 209 - Spring 2024

Asymptotic notation
• f is Big O(g) – means g is an upperbound
• f is Big Theta(g) – means g is a tight bound
• f is Big Omega(g) – means g is a lowerbound

Michael Eckmann - Skidmore
College - CS 209 - Spring 2024

Asymptotic notation

– In a multiterm function (terms that are added
together)

– Simply select the one that dominates (is O of)
the other terms. In other words select the term
that grows fastest (as n gets larger).

– Then remove the constant multiplier from this
term.

– What remains is a simpler function that is the
Big Theta of the original

Michael Eckmann - Skidmore
College - CS 209 - Spring 2024

Asymptotic notation
• Reminder of definitions of Big O, Big Omega

and Big Theta on the next slide.
• Note that these define sets of functions, but we

typically say “is” instead of “is in the set”

Michael Eckmann - Skidmore
College - CS 209 - Spring 2024

Asymptotic definitions

Michael Eckmann - Skidmore
College - CS 209 - Spring 2024

Asymptotic notation
• Idea of tight bound vs. not tight bound
• e.g.
• 2*n2 = O(n2) is asymptotically tight
• 2*n = O(n2) is NOT asymptotically tight (but it

is correct to say)
• So, O may or may not be asymptotically tight

Michael Eckmann - Skidmore
College - CS 209 - Spring 2024

Asymptotic notation
• Example: Because we cannot do better than n

for findMax, the overall (including best and
worst cases) running time of findMax is Big
Theta (n) – it is an asymptotically tight bound

– Notice that we must compare each element to
the maxSoFar and since there are n elements
we cannot do better than n-1 compares

Michael Eckmann - Skidmore
College - CS 209 - Spring 2024

Arithmetic Series

Let’s prove the sum of all i’s with i from 1 to n
from earlier is big O(n2) (n squared is an upper
bound on the sum)

Let’s also prove that it is Big Omega of n2 (that n2
is a lower bound on the sum)

Together, they mean that it is asymptotially tight,
that is Big Theta of n2

Michael Eckmann - Skidmore
College - CS 209 - Spring 2024

Algorithm Analysis
• Functions in increasing order

– constant functions (e.g. f(n) = 10)

– logarithmic functions (e.g. f(n) = log(20n))

– log squared (e.g. f(n) = log2(7n))

– linear functions (e.g. f(n) = 3n – 9)

– N log N (e.g. f(n) = 2n log n)

– quadratic functions (e.g. f(n) = 5n2 + 3n)

– cubic functions (e.g. f(n) = 3n3 - 17n2 + (4/7)n)

– exponential functions (e.g. f(n) = 5n)

– factorial functions (e.g. f(n) = n!)

Michael Eckmann - Skidmore
College - CS 209 - Spring 2024

Create a table

Let’s create a table of best/worst/overall running
times for a variety of algorithms that we’ve
analyzed already, including the linked list
algorithms, linear search, binary search, insertion
sort, selection sort, find max

Note: average running time is also sometimes
computed, but it is difficult to determine for some
problems.

Michael Eckmann - Skidmore
College - CS 209 - Spring 2024

Algorithm Analysis
• Let's consider 1 problem and 3 ways to solve it (using 3 different algorithms)

and we'll analyze the running times of each.

• The Maximum contiguous subsequence problem:

– Given an integer sequence A1, A2, ..., AN, find (and identify the sequence

corresponding to) the maximum value of j
k=i Ak . The maximum

contiguous subsequence sum is zero if all are negative. Therefore, an
empty sequence may be maximum.

• Example input: { -2, 11, -4, 13, -5, 2 } the answer is 20 and the sequence is

{ 11, -4, 13 }

• Another: { 1, -3, 4, -2, -1, 6 } the answer is 7, the sequence is { 4, -2, -1, 6 }

Michael Eckmann - Skidmore
College - CS 209 - Spring 2024

Algorithm Analysis
• The simplest is an exhaustive search (brute force algorithm.)

– that is, simply consider every possible subsequence and compute its
sum, keep doing this and save the greatest

– so, we set the maxSum = 0 (b/c it is at least this big) and we start at
the first element and consider every subsequence that begins with the
first element and sum them up ... if any has a sum larger than
maxSum, save this ...

– then start at second element and do the same ... and so on until start
at last element

• Advantages to this: easy to implement, easy to understand

• Disadvantages to this: slow

• Let's examine the algorithm.
– decide what is a good thing to count
– count that operation (in terms of the input size)

Michael Eckmann - Skidmore
College - CS 209 - Spring 2024

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

