CS 209
 Data Structures and Mathematical Foundations

$$
02 / 26 / 2024
$$

Instructor: Michael Eckmann

Today's Topics

- Questions/Comments?
- More Big O, Big Theta, Big Omega discussion and examples

Asymptotic notation

- Recap
- If $f(n)$ is $O(g(n))$ we say that g is what kind of bound on f ?
- If $f(n)$ is Omega($g(n))$ we say that g is what kind of bound on f ?
- If $f(n)$ is Theta $(g(n))$ we say that g is what kind of bound on f ?

Asymptotic notation

- f is $\mathrm{Big} \mathrm{O}(\mathrm{g})$ - means g is an upperbound
- f is $\operatorname{Big} \operatorname{Theta}(\mathrm{g})$ - means g is a tight bound
- f is Big Omega (g) - means g is a lowerbound

Asymptotic notation

- In a multiterm function (terms that are added together)
- Simply select the one that dominates (is O of) the other terms. In other words select the term that grows fastest (as n gets larger).
- Then remove the constant multiplier from this term.
- What remains is a simpler function that is the Big Theta of the original

Asymptotic notation

- Reminder of definitions of Big O, Big Omega and Big Theta on the next slide.
- Note that these define sets of functions, but we typically say "is" instead of "is in the set"

Asymptotic definitions
$f(n)$ is $O(g(n))$ if $\exists c>0$ and $n_{0}>0 \quad \ni$

$$
0 \leq f(n) \leq c g(n) \quad \forall n \geq n_{0}
$$

[we say that $g(n)$ is an UPBER BOUND on $f(n)$.
$f(n)$ is $\theta(g(n))$ iff. $f(n)$ is $O(g(n))$ and

$$
f(n) \text { is } \Omega(g(n)) \text {. }
$$

$[g(n)$ is a TIGHT BOUND on $f(n)]$
$f(n)$ is $\Omega(g(n))$ if $f \quad c>0$, and $n_{0}>0$ ว

$$
0 \leq c g(n) \leq f(n) \quad \forall n \geq n_{0}
$$

[we say that $g(n)$ is a LOWER BOUND on f(n)]

Asymptotic notation

- Idea of tight bound vs. not tight bound
- e.g.
- $2 * \mathrm{n}^{2}=\mathrm{O}\left(\mathrm{n}^{2}\right)$ is asymptotically tight
- $2 * \mathrm{n}=\mathrm{O}\left(\mathrm{n}^{2}\right)$ is NOT asymptotically tight (but it is correct to say)
- So, O may or may not be asymptotically tight

Asymptotic notation

- Example: Because we cannot do better than n for findMax, the overall (including best and worst cases) running time of findMax is Big Theta (n) - it is an asymptotically tight bound
- Notice that we must compare each element to the maxSoFar and since there are n elements we cannot do better than $\mathrm{n}-1$ compares

Arithmetic Series

Let's prove the sum of all i's with i from 1 to n from earlier is big $\mathrm{O}\left(\mathrm{n}^{2}\right)$ (n squared is an upper bound on the sum)

Let's also prove that it is Big Omega of n^{2} (that n^{2} is a lower bound on the sum)

Together, they mean that it is asymptotially tight, that is Big Theta of n^{2}

Algorithm Analysis

- Functions in increasing order
- constant functions
- logarithmic functions
- log squared
- linear functions
- $\mathrm{N} \log \mathrm{N}$
- quadratic functions
- cubic functions
- exponential functions
- factorial functions
(e.g. $\quad \mathrm{f}(\mathrm{n})=10$
(e.g. $\quad f(n)=\log (20 n)$
(e.g. $f(n)=\log ^{2}(7 n) \quad$)
(e.g. $\quad f(n)=3 n-9 \quad)$
(e.g. $f(n)=2 n \log n \quad)$
(e.g. $\left.f(n)=5 n^{2}+3 n \quad\right)$
(e.g. $\left.\quad f(n)=3 n^{3}-17 n^{2}+(4 / 7) n\right)$
(e.g. $\quad f(n)=5^{n}$
(e.g. $\quad \mathrm{f}(\mathrm{n})=\mathrm{n}$!

Create a table

Let's create a table of best/worst/overall running times for a variety of algorithms that we've analyzed already, including the linked list algorithms, linear search, binary search, insertion sort, selection sort, find max

Note: average running time is also sometimes computed, but it is difficult to determine for some problems.

Algorithm Analysis

- Let's consider 1 problem and 3 ways to solve it (using 3 different algorithms) and we'll analyze the running times of each.
- The Maximum contiguous subsequence problem:
- Given an integer sequence $A_{1}, A_{2}, \ldots, A_{N}$, find (and identify the sequence corresponding to) the maximum value of $\sum_{k=i}^{j} A_{k}$. The maximum contiguous subsequence sum is zero if all are negative. Therefore, an empty sequence may be maximum.
- Example input: $\{-2, \mathbf{1 1}, \mathbf{- 4}, \mathbf{1 3},-5,2\}$ the answer is 20 and the sequence is \{ $11,-4,13$ \}
- Another: $\{1,-3, \mathbf{4}, \mathbf{- 2}, \mathbf{- 1}, \mathbf{6}\}$ the answer is 7 , the sequence is $\{4,-2,-1,6\}$

Algorithm Analysis

- The simplest is an exhaustive search (brute force algorithm.)
- that is, simply consider every possible subsequence and compute its sum, keep doing this and save the greatest
- so, we set the maxSum $=0$ (b/c it is at least this big) and we start at the first element and consider every subsequence that begins with the first element and sum them up ... if any has a sum larger than maxSum, save this ...
- then start at second element and do the same ... and so on until start at last element
- Advantages to this: easy to implement, easy to understand
- Disadvantages to this: slow
- Let's examine the algorithm.
- decide what is a good thing to count
- count that operation (in terms of the input size)

