CS 209
 Data Structures and Mathematical Foundations

$$
02 / 23 / 2024
$$

Instructor: Michael Eckmann

Today's Topics

- Questions/Comments?
- Proof by induction
- Asymptotic notation

Proof by induction

- Let me introduce
- the format of a proof by induction,
- Appropriate situations when you would use this method of proof
- and we will apply it to
- Sum of i from 1 to $\mathrm{n}=\mathrm{n}^{*}(\mathrm{n}-1) / 2$

Proof by induction

Use Proof by Induction when trying to show that something (a proposition) is true for all positive integers

Base case: simplest value of n (e.g. $\mathrm{n}=1$)
show that the proposition is true for that simplest value of n

Inductive Step:

assume the proposition is true for $\mathrm{n}=\mathrm{k}$ (this is called the inductive
hypothesis)
show the proposition is true for $\mathrm{n}=\mathrm{k}+1$
Once we do the above the proposition has been proven true for all positive integer values of n by induction.

Michael Eckmann - Skidmore
College - CS 209- Spring 2024

"There exists" and "for all"

- There exists (written as a backwards uppercase E) - means that (at least) one exists
- If we need to show that there exists something we get to choose one
- For all (written as an upsidedown uppercase A) - means that something is true for ALL values (possibly subject to a constraint, e.g. all $n>1$)
- If we need to show that something is true "for all", we cannot just choose one value and show it is true for that one, we must show it is true for all values (subject to whatever constraint)

Asymptotic notation

- Big O - upperbound
- Big Theta - tight bound
- Big Omega - lowerbound
- Defined on next slide

Asymptotic definitions
$f(n)$ is $O(g(n))$ if $\exists c>0$ and $n_{0}>0 \quad \ni$

$$
0 \leq f(n) \leq c g(n) \quad \forall n \geq n_{0}
$$

[we say that $g(n)$ is an UPBER BOUND on $f(n)$.
$f(n)$ is $\theta(g(n))$ iff. $f(n)$ is $O(g(n))$ and

$$
f(n) \text { is } \Omega(g(n)) \text {. }
$$

$[g(n)$ is a TIGHT BOUND on $f(n)]$
$f(n)$ is $J(g(n))$ if $f \quad c>0$, and $n_{0}>02$

$$
0 \leq c g(n) \leq f(n) \quad \forall n \geq n_{0}
$$

[we say that $g(n)$ is a LOWER BOUND on f(n)]

Asymptotic notation

- big O
- When we say $f(n)$ is $O(g(n))$
$-g(n)$ is an upper bound on $f(n)$

(a)

(b)

(c)

Asymptotic notation

- Big O, Big Omega and Big Theta define sets of functions, but we typically say "is" instead of "is in the set of"
- Because we cannot do better than n for findMax, the overall (including best and worst cases) running time of findMax is Big Theta (n) - it is an asymptotically tight bound
- Because we must compare each element to the maxSoFar and since there are n elements we cannot do better than $\mathrm{n}-1$ compares

Asymptotic notation

- Why use asymptotic behavior for efficiency?
- Ignores small inputs (small values of n) because we may be able to create special purpose algorithms if the input is expected to be small
- We care only about the efficiency for large n
- Ignore constants
- Faster machines can combat constant factors
- Faster machines cannot combat poor asymptotics

Asymptotic notation

- Let's use the definition of O and Big Omega and Big Theta in an example to determine the asymptotics of some particular function.
- Say $f(n)=3 * n+5$
- Is it $\mathrm{O}(\mathrm{n})$?
- Is it BigOmega(n)?
- Is it BigTheta(n)?

Asymptotic notation

- Idea of tight bound vs. not tight bound
- e.g.
- $2 * \mathrm{n}^{2}=\mathrm{O}\left(\mathrm{n}^{2}\right)$ is asymptotically tight
- $2 * \mathrm{n}=\mathrm{O}\left(\mathrm{n}^{2}\right)$ is NOT asymptotically tight (but it is correct to say)
- So, O may or may not be asymptotically tight

Arithmetic Series

Let's prove that the arithmetic sum
$1+2+\ldots+\mathrm{n}=\left(\mathrm{n}^{*}(\mathrm{n}+1)\right) / 2$
is big $\mathrm{O}\left(\mathrm{n}^{2}\right)$ on the board (that n squared is an upper bound on the sum)

Let's also prove that it is Big Omega of n^{2} (that n^{2} is a lower bound on the sum)

Together, they mean that n^{2} is an asymptotially tight bound --- that is Big Theta of n^{2}

Michael Eckmann - Skidmore
College - CS 209-Spring 2024

