CS 209
Data Structures and Mathematical

Foundations

02/21/2024

Instructor: Michael Eckmann

Today’s Topics
Questions/Comments?
Reminder of log and Ig
Recap of all our algorithm analysis so far

Write findmax and carefully count up work to
determine runtime

List of functions 1n increasing order

Graphs of some of those functions and charts with
actual calculations of times

Michael Eckmann - Skidmore
College - CS 209 - Spring 2024

log

Log function and relation to exponential function
Notation: Ig = log base 2

lg of a number means = what power of 2 produces that number

Example: If we know 2'° = 1024, then that means 1g(1024) = 10

1g(1024) 1s the power of 2 that results in 1024

Occurs 1n runtime algorithm analysis when we continually cut the size

of the list in half (e.g. like 1n binary search).

Michael Eckmann - Skidmore
College - CS 209 - Spring 2024

Algorithm Analysis

* Some takeaways

Log function grows very slowly, that is, as n increases 1g n
increases slowly

Exponential grows very fast, that 1s, as n increases 2 to the n
increases very quickly

The slower growing functions are more desireable runtimes
for algorithms, for large values of n (large mputs)

Michael Eckmann - Skidmore
College - CS 209 - Spring 2024

Algorithm Analysis

Recap on runtime analysis we have done so far

Linear search: best case is constant time, worst case is linear time (aka n
time)

Binary search: best case 1s constant time, worst case is log(n) time

SelectionSort: there was no difference between best and worst cases ---
all cases take quadratic time (aka n? time)

* InsertionSort: Best Case was linear (aka n time), and worst case was
quadratic (aka n? time)

* Space analysis:

— We noticed that MergeSort had n extra space required. All the
other algorithms we looked at had only constant extra space
required.

Michael Eckmann - Skidmore
College - CS 209 - Spring 2024

FindMax

* [et’s write the code to do it

* Let’s more carefully count up the work than we have been doing

Michael Eckmann - Skidmore
College - CS 209 - Spring 2024

Algorithm Analysis

* Some common functions (in increasing order) used in analysis are

— constant functions (e.g. f(n) =10)
— logarithmic functions (e.g. f(n) = log(20n))
— log squared (e.g. f(n) = log?*(7n))
— linear functions (e.g. f(n)=3n-9)
— Nlog N (e.g. f(n) =2n logn)
— quadratic functions (e.g. f(n) =5n* +3n)
— cubic functions (e.g. f(n) =3n® - 17n*>+ (4/7)n)
— exponential functions (e.g. f(n) =5)
— factorial functions (e.g. f(n) =n!)

Michael Eckmann - Skidmore
College - CS 209 - Spring 2024

Algorithm Analysis

* Let's look at the tables with examples of actual times for certain

running times given large inputs

* The time complexity of an algorithm 1s much more important than
processor speed (for large enough inputs) even though processor speeds

get faster year after year

Michael Eckmann - Skidmore
College - CS 209 - Spring 2024

Algorithm Analysis

* Growth rates of functions are different than being able to say one

function is less than another

—¢.g. 200*n* + 100 is greater than 0.002*n’ for many low n values
but as n increases above some value, 0.002*n’ will always be bigger

— For low values of n, we would actually prefer the cubic runtime
algorithm over the quadratic

— But for large enough values of n, the quadratic runtime
algorithm will be more efficient (run in less time)

* The constant being multiplied by the dominant term 1s 1ignored when
describing the runtime, but for low enough values of n, we may prefer a

less efficient runtime algorithm

Michael Eckmann - Skidmore
College - CS 209 - Spring 2024

Algorithm Analysis

* Suppose we have an algorithm A that runs in 20*n milliseconds and

and algorithm B that runs in n* milliseconds.

* Which algorithm will you prefer for LARGE n?

Michael Eckmann - Skidmore
College - CS 209 - Spring 2024

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

