
CS 209
Data Structures and Mathematical

Foundations
02 / 21 / 2024

Instructor: Michael Eckmann

Michael Eckmann - Skidmore
College - CS 209 - Spring 2024

Today’s Topics
• Questions/Comments?
• Reminder of log and lg
• Recap of all our algorithm analysis so far
• Write findmax and carefully count up work to

determine runtime
• List of functions in increasing order
• Graphs of some of those functions and charts with

actual calculations of times

log
• Log function and relation to exponential function

• Notation: lg = log base 2

• lg of a number means = what power of 2 produces that number

• Example: If we know 210 = 1024, then that means lg(1024) = 10

• lg(1024) is the power of 2 that results in 1024

• Occurs in runtime algorithm analysis when we continually cut the size
of the list in half (e.g. like in binary search).

Michael Eckmann - Skidmore
College - CS 209 - Spring 2024

Algorithm Analysis
• Some takeaways

– Log function grows very slowly, that is, as n increases lg n
increases slowly

– Exponential grows very fast, that is, as n increases 2 to the n
increases very quickly

– The slower growing functions are more desireable runtimes
for algorithms, for large values of n (large inputs)

Michael Eckmann - Skidmore
College - CS 209 - Spring 2024

Algorithm Analysis
• Recap on runtime analysis we have done so far
• Linear search: best case is constant time, worst case is linear time (aka n

time)
• Binary search: best case is constant time, worst case is log(n) time
• SelectionSort: there was no difference between best and worst cases ---

all cases take quadratic time (aka n2 time)
• InsertionSort: Best Case was linear (aka n time), and worst case was

quadratic (aka n2 time)
• Space analysis:

– We noticed that MergeSort had n extra space required. All the
other algorithms we looked at had only constant extra space
required.

Michael Eckmann - Skidmore
College - CS 209 - Spring 2024

FindMax
• Let’s write the code to do it

• Let’s more carefully count up the work than we have been doing

Michael Eckmann - Skidmore
College - CS 209 - Spring 2024

Algorithm Analysis
• Some common functions (in increasing order) used in analysis are

– constant functions (e.g. f(n) = 10)

– logarithmic functions (e.g. f(n) = log(20n))

– log squared (e.g. f(n) = log2(7n))

– linear functions (e.g. f(n) = 3n – 9)

– N log N (e.g. f(n) = 2n log n)

– quadratic functions (e.g. f(n) = 5n2 + 3n)

– cubic functions (e.g. f(n) = 3n3 - 17n2 + (4/7)n)

– exponential functions (e.g. f(n) = 5n)

– factorial functions (e.g. f(n) = n!)

Michael Eckmann - Skidmore
College - CS 209 - Spring 2024

Algorithm Analysis
• Let's look at the tables with examples of actual times for certain

running times given large inputs

• The time complexity of an algorithm is much more important than
processor speed (for large enough inputs) even though processor speeds
get faster year after year

Michael Eckmann - Skidmore
College - CS 209 - Spring 2024

Algorithm Analysis
• Growth rates of functions are different than being able to say one

function is less than another

– e.g. 200*n2 + 100 is greater than 0.002*n3 for many low n values
but as n increases above some value, 0.002*n3 will always be bigger

– For low values of n, we would actually prefer the cubic runtime
algorithm over the quadratic

– But for large enough values of n, the quadratic runtime
algorithm will be more efficient (run in less time)

• The constant being multiplied by the dominant term is ignored when
describing the runtime, but for low enough values of n, we may prefer a
less efficient runtime algorithm

Michael Eckmann - Skidmore
College - CS 209 - Spring 2024

Algorithm Analysis
• Suppose we have an algorithm A that runs in 20*n milliseconds and

and algorithm B that runs in n2 milliseconds.

• Which algorithm will you prefer for LARGE n?

Michael Eckmann - Skidmore
College - CS 209 - Spring 2024

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

