CS 209
 Data Structures and Mathematical Foundations

$$
02 / 21 / 2024
$$

Instructor: Michael Eckmann

Today's Topics

- Questions/Comments?
- Reminder of log and \lg
- Recap of all our algorithm analysis so far
- Write findmax and carefully count up work to determine runtime
- List of functions in increasing order
- Graphs of some of those functions and charts with actual calculations of times

\log

- Log function and relation to exponential function
- Notation: $\lg =\log$ base 2
- \lg of a number means $=$ what power of 2 produces that number
- Example: If we know $2^{10}=1024$, then that means $\lg (1024)=10$
- $\lg (1024)$ is the power of 2 that results in 1024
- Occurs in runtime algorithm analysis when we continually cut the size of the list in half (e.g. like in binary search).

Michael Eckmann - Skidmore
College - CS 209- Spring 2024

Algorithm Analysis

- Some takeaways
- Log function grows very slowly, that is, as n increases $\lg n$ increases slowly
- Exponential grows very fast, that is, as n increases 2 to the n increases very quickly
- The slower growing functions are more desireable runtimes for algorithms, for large values of n (large inputs)

Algorithm Analysis

- Recap on runtime analysis we have done so far
- Linear search: best case is constant time, worst case is linear time (aka n time)
- Binary search: best case is constant time, worst case is $\log (\mathrm{n})$ time
- SelectionSort: there was no difference between best and worst cases --all cases take quadratic time (aka n^{2} time)
- InsertionSort: Best Case was linear (aka n time), and worst case was quadratic (aka n^{2} time)
- Space analysis:
- We noticed that MergeSort had n extra space required. All the other algorithms we looked at had only constant extra space required.

FindMax

- Let's write the code to do it
- Let's more carefully count up the work than we have been doing

Algorithm Analysis

- Some common functions (in increasing order) used in analysis are
- constant functions
- logarithmic functions
- log squared
- linear functions
- $\mathrm{N} \log \mathrm{N}$
- quadratic functions
- cubic functions
- exponential functions
- factorial functions
(e.g. $\quad \mathrm{f}(\mathrm{n})=10$
(e.g. $\quad f(n)=\log (20 n)$
(e.g. $\quad f(n)=\log ^{2}(7 n)$
(e.g. $\quad f(n)=3 n-9$
(e.g. $\quad f(n)=2 n \log n$
(e.g. $\quad f(n)=5 n^{2}+3 n$
(e.g. $\quad f(n)=3 n^{3}-17 n^{2}+(4 / 7) n$)
(e.g. $\quad f(n)=5^{n}$
(e.g. $f(n)=n$!

Algorithm Analysis

- Let's look at the tables with examples of actual times for certain running times given large inputs
- The time complexity of an algorithm is much more important than processor speed (for large enough inputs) even though processor speeds get faster year after year

Algorithm Analysis

- Growth rates of functions are different than being able to say one function is less than another
- e.g. $200 * n^{2}+100$ is greater than $0.002 * n^{3}$ for many low n values but as n increases above some value, $0.002^{*} \mathrm{n}^{3}$ will always be bigger
- For low values of n , we would actually prefer the cubic runtime algorithm over the quadratic
- But for large enough values of n, the quadratic runtime algorithm will be more efficient (run in less time)
- The constant being multiplied by the dominant term is ignored when describing the runtime, but for low enough values of n, we may prefer a less efficient runtime algorithm

Algorithm Analysis

- Suppose we have an algorithm A that runs in $20 * \mathrm{n}$ milliseconds and and algorithm B that runs in n^{2} milliseconds.
- Which algorithm will you prefer for LARGE n ?

