
CS 209
Data Structures and Mathematical

Foundations
02 / 16 / 2024

Instructor: Michael Eckmann

Michael Eckmann - Skidmore
College - CS 209 - Spring 2024

Today’s Topics
• Questions/Comments?
• Thoughts about run-time of methods in Linked

List
• Run-time analysis by counting the work done

– Selection sort (we wrote a version of this
the 3rd day of class)

– Insertion sort
– Linear search
– Binary search

• Algorithm analysis in general

Linked Lists
• head refers to the first Node in the LinkedList
• Each Node’s next refers to the next Node in the

LinkedList
• The last-Node-in-the-LinkedList’s next has the value

None - yesterday’s lab had you maintain a link to this
last node, called tail.

Michael Eckmann - Skidmore
College - CS 209 - Spring 2024

Linked Lists
• Let’s consider “runtime” of the operations (assume

number of elements is n)
• Which methods benefitted from the tail reference?

Algorithm Analysis
• An algorithm is a specific set of instructions for solving a problem.

• Problem vs. algorithm --- a problem is not the same as an algorithm.
Example: Sorting is a problem. An algorithm is a specific recipe for
solving a problem.

– bubbleSort, insertionSort, etc. are different algorithms for sorting.

• So, when we're analyzing the running time --- we're analyzing the
running time of an algorithm, not a problem.

Michael Eckmann - Skidmore
College - CS 209 - Spring 2024

Algorithm Analysis
• Algorithms are often analyzed for

– the amount of time they take to run
– the amount of (extra) space required while running

– Input size is n. e.g. when an algorithm works on a list, the
number of elements of the list is n

Michael Eckmann - Skidmore
College - CS 209 - Spring 2024

Algorithm Analysis
• When we are considering the run-time of an algorithm

that works on a list, we say the number of items in the
list is n

• When we count up the amount of work in an algorithm,
we consider certain operations like comparisons,
assignments, arithmetic to take some (different)
constant amounts of time.

Michael Eckmann - Skidmore
College - CS 209 - Spring 2024

Algorithm Analysis
• We can do best case analysis (when the algorithm does the least

work / that is, fastest) and worst case analysis (when the algorithm
does the most work / that is, slowest).

• We must always consider the size of the list to be an arbitrary value
n.

• We can’t set n to some value when considering best case or worst
case. e.g. can’t say best case of an algorithm is when the list is
empty (because you are setting n to 0 in that case.) Can’t say best
case is when list is length 1 (here you are setting n=1).

• What we can do is set values of the list to cause a best case or worst
case situation. We just can’t restrict the length of the list to be some
particular value (or even some subset of the positive integers).

Michael Eckmann - Skidmore
College - CS 209 - Spring 2024

Algorithm Analysis
• Consider linear search
• I’ll write code for linear search on the board
• For a list of size n
• What situation(s) cause the best case (that is, the least

amount of work to do)?
• What situation(s) cause the worst case (that is, the most

amount of work to do)?

Michael Eckmann - Skidmore
College - CS 209 - Spring 2024

Algorithm Analysis
• Consider linear search
• For a list of size n
• The worst case happens when the key is not found, or it is

found in the last slot
– Result: linear search makes n compares in the worst

case
• The best case happens when the key is found in the first slot

– Result: linear search makes 1 compare in the best
case

– Notice: even when n is large, best case will still be
when key is found in first slot

Michael Eckmann - Skidmore
College - CS 209 - Spring 2024

Algorithm Analysis
• Let's look at a sorting algorithm page and focus on SelectionSort and

the InsertionSort

• Also we can look at the code for SelectionSort that we wrote earlier
this semester

• http://math.hws.edu/eck/js/sorting/xSortLab.html

• We will examine several runs and see how long they take.

Michael Eckmann - Skidmore
College - CS 209 - Spring 2024

http://math.hws.edu/eck/js/sorting/xSortLab.html

Algorithm Analysis
• The following sum appeared when we tried to figure out how many

compares happen in SelectionSort

• Sum of i, where i goes from 1 to n = 1 + 2 + 3 + … + (n-1) + n

• = n * (n + 1) / 2

• We can prove it with induction (maybe next time)

• Examples:
– 1+2+...+10 = (10*11)/2 = 55
– 1+2+3+4 = (4*5)/2 = 10
– 1+2+...+100 = (100*101)/2 = 5050

Michael Eckmann - Skidmore
College - CS 209 - Spring 2024

Algorithm Analysis
• Let’s now consider binary search
• For a list of size n
• The best case happens when?

– Result: binary search makes how many
compares in best case?

• The worst case happens when?
– Result: binary search makes how many

compares in the worst case

Michael Eckmann - Skidmore
College - CS 209 - Spring 2024

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

