CS 209
Data Structures and Mathematical

Foundations

02/16/2024

Instructor: Michael Eckmann



Today’s Topics
Questions/Comments?
Thoughts about run-time of methods in Linked
List
Run-time analysis by counting the work done

— Selection sort (we wrote a version of this
the 3rd day of class)

— Insertion sort
— Linear search
— Binary search

Algorithm analysis 1n general

Michael Eckmann - Skidmore
College - CS 209 - Spring 2024



Linked Lists

* head retfers to the first Node in the LinkedList

 Each Node’s next refers to the next Node 1n the
LinkedList

* The last-Node-in-the-LinkedList’s next has the value
None - yesterday’s lab had you maintain a link to this
last node, called tail.




[Linked Lists

* Let’s consider “runtime” of the operations (assume
number of elements is n)

* Which methods benefitted from the tail reference?

Michael Eckmann - Skidmore
College - CS 209 - Spring 2024



Algorithm Analysis

* An algorithm is a specific set of instructions for solving a problem.

* Problem vs. algorithm --- a problem is not the same as an algorithm.
Example: Sorting 1s a problem. An algorithm 1s a specific recipe for

solving a problem.

— bubbleSort, insertionSort, etc. are different algorithms for sorting.

* So, when we're analyzing the running time --- we're analyzing the

running time of an algorithm, not a problem.

Michael Eckmann - Skidmore
College - CS 209 - Spring 2024



Algorithm Analysis

* Algorithms are often analyzed for
— the amount of time they take to run

— the amount of (extra) space required while running

— Input size 1s n. e.g. when an algorithm works on a list, the
number of elements of the list is n

Michael Eckmann - Skidmore
College - CS 209 - Spring 2024



Algorithm Analysis

* When we are considering the run-time of an algorithm
that works on a list, we say the number of 1tems in the
listis n

* When we count up the amount of work 1n an algorithm,
we consider certain operations like comparisons,

assignments, arithmetic to take some (different)
constant amounts of time.

Michael Eckmann - Skidmore
College - CS 209 - Spring 2024



Algorithm Analysis
* We can do best case analysis (when the algorithm does the least
work / that 1s, fastest) and worst case analysis (when the algorithm
does the most work / that 1s, slowest).

* We must always consider the size of the list to be an arbitrary value
n.

* We can’t set n to some value when considering best case or worst
case. e€.g.can’t say best case of an algorithm is when the list 1s
empty (because you are setting n to 0 in that case.) Can’t say best
case 1s when list 1s length 1 (here you are setting n=1).

* What we can do 1s set values of the list to cause a best case or worst
case situation. We just can’t restrict the length of the list to be some
particular value (or even some subset of the positive integers).

Michael Eckmann - Skidmore
College - CS 209 - Spring 2024



Algorithm Analysis

* Consider linear search
* 1’1l write code for linear search on the board
* For a list of size n

* What situation(s) cause the best case (that 1s, the least
amount of work to do)?

* What situation(s) cause the worst case (that 1s, the most
amount of work to do)?

Michael Eckmann - Skidmore
College - CS 209 - Spring 2024



Algorithm Analysis

Consider linear search

For a list of size n

The worst case happens when the key is not found, or it 1s
found 1n the last slot

Result: linear search makes n compares in the worst
case

The best case happens when the key 1s found in the first slot

Result: linear search makes 1 compare in the best
case

Notice: even when n 1s large, best case will still be
when key 1s found 1n first slot

Michael Eckmann - Skidmore
College - CS 209 - Spring 2024



Algorithm Analysis

Let's look at a sorting algorithm page and focus on SelectionSort and

the InsertionSort

Also we can look at the code for SelectionSort that we wrote earlier

this semester

We will examine several runs and see how long they take.

Michael Eckmann - Skidmore
College - CS 209 - Spring 2024


http://math.hws.edu/eck/js/sorting/xSortLab.html

Algorithm Analysis

The following sum appeared when we tried to figure out how many

compares happen in SelectionSort

Sum of 1, where 1 goes from 1l ton=1+2+3+ ... +(n-1) +n
=n*mn+1)/2

We can prove it with induction (maybe next time)

Examples:
- 1+2+.+10 =(10*11)/2 =155
- 1+2+3+4 = (4*5)/2 =10
- 1+2+..+100 =(100*101)/2 =5050

Michael Eckmann - Skidmore
College - CS 209 - Spring 2024



Algorithm Analysis

Let’s now consider binary search
For a list of size n

The best case happens when?
— Result: binary search makes how many
compares in best case?
The worst case happens when?

— Result: binary search makes how many
compares 1n the worst case

Michael Eckmann - Skidmore
College - CS 209 - Spring 2024



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

